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ABSTRACT

MEASURING NETWORK INTERFERENCE AND
MITIGATING IT WITH DNS ENCRYPTION

MAY 2022

SEYED ARIAN AKHAVAN NIAKI

B.Sc., SHARIF UNIVERSITY OF TECHONOLOGY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Phillipa Gill

The Internet has emerged as one of the most important tools of communication.

With around 4.5 billion active users as of July 2020, it provides people the opportunity

to access a vast treasure trove of information and express their opinions online. How-

ever, some countries consider the Internet as a critical communication medium and

attempt to deploy network interference strategies. National governments, in particu-

lar, are notorious for their attempts to impose restrictions on online communication.

Further, certain Internet service providers (ISPs) have been known to throttle specific

applications and violate net neutrality principles.

Alongside the proliferation of network interference and an increasing awareness of

the security and privacy of users over the Internet, we have seen a rise in the usage

of network traffic encryption technologies. However, even with encryption enabled,

vii



network interference is still possible due to the information leakage of the DNS and

TLS protocols. To this end, a rich ecosystem of DNS/TLS improvements has come

to light with the purpose of improving user privacy by obfuscating the domains a

user visits. These protocols have the potential to render certain forms of censorship

ineffective.

In this dissertation, I will describe my contributions towards understanding net-

work interference, including Internet censorship, as well as the throttling of specific

network applications (traffic differentiation). I develop a network measurement plat-

form that enables monitoring of network interference globally on an ongoing basis. I

then focus on understanding the DNS censorship behavior of the Great Firewall of

China (GFW) by leveraging remote network measurement techniques. Additionally,

I investigate the prevalence of traffic differentiation practices and how they impact

popular video streaming applications. I demonstrate that network interference is

prevalent even with encryption enabled. This has led to the development of DNS and

TLS improvements that aim to enhance user privacy and security. I review two recent

proposals, namely DNS over HTTPS/TLS (DoH/DoT) and Encrypted Server Name

Indication (ESNI), and investigate their potential to mitigate network interference

and improve user privacy.
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CHAPTER 1

INTRODUCTION

Since its early days, the Internet has proven to be one of the most influential

media allowing people around the world to access information and content, commu-

nicate with each other, and express their opinions online. However, governments and

oppressive regimes have attempted to impose restrictions on online communication

by censoring or disrupting the connections over the Internet [81], and certain Internet

Service Providers (ISPs) deploy traffic differentiation techniques to throttle specific

applications [165].

Network interference occurs when an adversary interferes with the communication

between a user and a server, often disrupting the communication. Internet censor-

ship and traffic differentiation are some instances of network interference over the

Internet. In response, security researchers develop new network interference evasion

strategies. These ongoing efforts to evade network interference have led to a cat-and-

mouse game, as new evasion techniques are developed [41], and adversaries continue

to detect and defeat these evasion techniques and find new ways to interfere with the

communication. Developing more robust techniques to evade network interference

requires that we first understand how network interference is being deployed. In this

dissertation, I focus on developing measurement techniques and platforms that study

network interference on a global scale and how they impact users.

With the proliferation of network interference and Internet surveillance in recent

years [108], users have become more aware of their security and privacy over the

Internet. This has led to the development of privacy-enhancing technologies and
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a rise in the usage of network traffic encryption. The number of Transport Layer

Security (TLS) certificates issued by Let’s Encrypt increased from 100 million to one

billion from 2017 to 2020 [18]. Nevertheless, due to the information leakage of the

DNS protocol, network interference is still feasible. To this end, a rich ecosystem of

DNS improvements has been proposed to improve user privacy by obfuscating the

domains a user visits. These protocols have the potential to render certain forms

of censorship ineffective. In the final part of this thesis, I perform a longitudinal

measurement study to investigate the potential of these protocols to improve user

privacy and mitigate network interference.

1.1 Challenges

I now review the challenges to be overcome with the goal of better understanding

how network interference is deployed and how domain name encryption technologies

can help in mitigating it.

1.1.1 Network Interference

The literature is rich with studies of various aspects of Internet censorship [29,

30, 31, 32, 37, 47, 50, 69, 76, 77, 99, 100, 103, 116, 117, 144, 173, 186, 193, 195, 196,

222, 235, 239, 240, 259], but a global, longitudinal baseline of censorship covering

a variety of censorship methods remains elusive. Most studies have been limited to

a short period of time and/or a few countries; the few exceptions have traded off

detail for breadth of coverage. Furthermore, the most recent large-scale audits of

net neutrality practices were published a decade ago. These studies were focused

on backbone networks [261] and targeted specific protocols [85]. Due to the shift

towards mobile Internet users, I argue that a global, longitudinal monitoring of traffic

differentiation practices over the Internet is necessary. I highlight three key challenges

that must be addressed for studying network interference:
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Access to vantage points. With few exceptions 1, measuring Internet censorship

requires access to “vantage point” hosts within the region of interest. Similarly, in

order to determine traffic differentiation policies, access to vantage points that can

replay a recorded network trace is needed. With the shift towards mobile Internet

users, it is crucial to study traffic differentiation on cellular networks. The simplest

way to obtain vantage points is to recruit volunteers [103, 116, 223, 242]. Volunteers

can run software that performs network measurements from each vantage point, but

recruiting more than a few volunteers per country and retaining them for long periods

is difficult. Further, volunteers may be exposed to personal risks for participating in

censorship research. More recently, for studying Internet censorship, researchers have

explored alternatives, such as employing DNS resolvers [196, 222], echo servers [240],

web browsers visiting instrumented websites [50], and TCP side channels [97, 195].

These alternatives reduce the risk to volunteers and can achieve broader, longer-term

coverage than volunteer labor. However, they cannot perform arbitrary network mea-

surements; for instance, open DNS resolvers can only reveal DNS-based censorship.

Understanding what to test. Testing a single blocked URL can reveal that

a censorship system exists within a country, but does not reveal the details of the

censorship policy, how aggressively it is enforced, or all of the blocking techniques

used. Even broad test lists, like those maintained by the Citizen Lab [67], may be

insufficient [79]. Web pages are often short-lived, so tests performed in the present

may be misleading [250].

Similar to the censorship case, for traffic differentiation, testing a single application

can reveal that an ISP is deploying traffic differentiation. However, it does not reveal

the policies of the ISP towards different applications. For instance, an ISP could use

different rate limits and target a different set of applications.

1China filters inbound as well as outbound traffic, making external observation simpler.
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Reliable detection. Censors can prevent access to content in various ways. For

instance, censors may choose to overtly censor some material by presenting “block

pages”, or they can covertly censor other material by mimicking site outages [78, 116].

Many recent studies focus on a single technique [50, 97, 195, 196, 222, 230, 240]. This

is valuable but incomplete, because censors may combine different techniques to filter

different types of content. As the Internet evolves and new modes of access appear

(e.g., mobile devices), censorship evolves as well, and monitoring systems must keep

up [29, 178]. Ad-hoc detection strategies without rigorous evaluation are prone to

false positives [259]. For instance, the detection of block pages requires taking regional

differences in content into account [144].

Previous work on traffic differentiation focused on detecting differentiation on a

per-device basis [178]. This technique is known as “Record and replay”. However,

individual tests are subject to confounding factors such as transient periods of poor

network performance. In contrast, by leveraging test results from multiple users in

the same ISP, identifying fixed-rate throttling can be done more accurately.

1.1.2 Domain Name Encryption Technologies

The domain name encryption technologies discussed, namely, DoH [137], DoT [140]

and the ESNI [214] extension have been recently proposed and are in their early stages

of adoption. As a result, there exist some challenges that need to be addressed before

they can be beneficial to the community. I overview three of the challenges of domain

name encryption technologies.

Full domain name confidentiality. In today’s Internet, plaintext domain names

are exposed through two channels: the SNI extension in TLS and traditional DNS

name resolutions. The deployment of DoH/DoT is thus a prerequisite for ESNI.

Equivalently, the use of DoH/DoT will not provide any meaningful privacy if domain

names are still exposed through the (unencrypted) SNI extension in TLS handshake
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traffic. Recently, there is a push for the deployment of DoH/DoT, with major organi-

zations already supporting it (e.g., Google, Cloudflare, Firefox), though this has not

been followed by an equivalent effort for the deployment of ESNI. Unless the confi-

dentiality of domain names is preserved on both channels (TLS and DNS), neither

technology can provide any actual privacy benefit if deployed individually.

Trusting third-parties. Although the benefits of DoH/DoT against last-mile ad-

versaries are clear, this comes with the cost of fully trusting a third-party operator

of the DoH/ DoT resolver on which users have outsourced all their DNS resolu-

tions [134]. Several companies already offer public DoH/DoT resolvers, including

Google [118, 119] and Cloudflare [122]. One possible way to decentralized encrypted

DNS resolution is to distribute DNS queries across multiple DoH/DoT resolvers.

Hosting Providers. Hosting and CDN providers are in a more privileged position

to achieve meaningful impact in helping improve the potential privacy benefits of

ESNI, as they can control the number of co-hosted domains per IP address, and the

frequency of IP addresses rotation. Unless website owners prefer otherwise, providers

could group more websites under the same IP address (which, understandably, may

not be desirable for some websites). To improve user privacy, providers should cluster

websites according to similarities in terms of traffic patterns and popularity ranking,

to hinder website fingerprinting attempts.

1.2 Contributions

This dissertation tackles the problem of network interference and how recent do-

main name encryption technologies can mitigate it and improve user privacy. In

order to do so, I first develop network measurement techniques and platforms that

are able to overcome the current challenges of accurately measuring network inter-

ference, such as Internet censorship and traffic differentiation. Then I investigate the

privacy benefits of domain name encryption technologies.
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I present the system architecture of ICLab, a global longitudinal censorship mea-

surement platform. ICLab primarily uses commercial Virtual Private Network servers

(VPNs) as vantage points, after validating that they are in their advertised locations.

Using the data collected by ICLab, I detect a variety of censorship mechanisms de-

ployed in different regions and how censors treat different types of content differently.

Along the same lines, I will present our longitudinal study of the GFW’s DNS in-

jection behavior, where I reveal several previously-unknown properties of China’s

filtering system. I then present Wehe, a mobile application that allows for large-

scale crowdsourced measurements for traffic differentiation. Using the combined data

collected by Wehe, I form high-confidence inferences of differentiation practices. Fur-

ther, I investigate how throttling impacts video streaming resolution for popular video

streaming providers. Next, I evaluate the privacy benefits of the recent domain name

encryption technologies by using DNS data collected through active DNS measure-

ments from nine countries and over a period of two months. I study the implications

of the co-hosting degree of the current web on ESNI’s privacy benefits.

Specifically, I make the following contributions:

A Global, Longitudinal Internet Censorship Measurement Platform. I

present ICLab, an Internet measurement platform specialized for censorship research.

It achieves a new balance between breadth of coverage and detail of measurements,

by using commercial VPNs as vantage points distributed around the world. ICLab

has been operated continuously since late 2016. It can currently detect DNS manipu-

lation and TCP packet injection, and overt “block pages” however they are delivered.

ICLab records and archives raw observations in detail, making retrospective analysis

with new techniques possible. At every stage of processing, ICLab seeks to minimize

false positives and manual validation. Within 53,906,532 measurements of individual

web pages, collected by ICLab in 2017 and 2018, I observe blocking of 3,602 unique

URLs in 60 countries. Using this data, I compare how different blocking techniques
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are deployed in different regions and/or against different types of content. Our lon-

gitudinal monitoring pinpoints changes in censorship in India and Turkey concurrent

with political shifts, and our clustering techniques discover 48 previously unknown

block pages. ICLab’s broad and detailed measurements also expose other forms of

network interference, such as surveillance and malware injection (Chapter 2).

Demystifying Great Firewall’s DNS Censorship Behavior. I analyze the

DNS injection behavior of the GFW over a period of nine months using the Alexa

top 1M domains as a test list. I first focus on understanding the publicly routable

IPs used by the GFW in forged DNS responses and observe groups of IPs used to

filter specific sets of domains. I also see a sharp decline in public IPs injected by

the GFW in November 2019. Then, I fingerprint three different injectors that were

observed in our measurements. Notably, one of these injectors mirrors the IP TTL

value from probe packets in its injected packets which has implications for the use

of TTL-limited probes for localizing censors. Finally, I confirm that the observations

generally hold across IP prefixes registered in China (Chapter 2).

How Great is the Great Firewall? Measuring China’s DNS Censorship.

I introduce GFWatch, a large-scale, longitudinal measurement platform capable of

testing hundreds of millions of domains daily, enabling continuous monitoring of the

GFW’s DNS filtering behavior. I present the results of running GFWatch over a

nine-month period, during which I tested an average of 411M domains per day and

detected a total of 311K domains censored by GFW’s DNS filter. I further reverse

engineer regular expressions used by the GFW and find 41K innocuous domains that

match these filters, resulting in overblocking of their content. I also observe bogus

IPv6 and globally routable IPv4 addresses injected by the GFW, including addresses

owned by US companies, including Facebook, Dropbox, and Twitter. Using data

from GFWatch, I studied the impact of GFW blocking on the global DNS system. I

found 77K censored domains with DNS resource records polluted in popular public
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DNS resolvers, such as Google and Cloudflare. Finally, I propose strategies to detect

poisoned responses that can (1) sanitize poisoned DNS records from the cache of

public DNS resolvers, and (2) assist in the development of circumvention tools to

bypass the GFW’s DNS censorship (Chapter 2).

A large-scale analysis of deployed traffic differentiation practices. I con-

ducted a one-year study of content-based traffic differentiation policies deployed in

operational networks, using results from 1,045,413 crowdsourced measurements con-

ducted by 126,249 users across 2,735 ISPs in 183 countries/regions. I develop and

evaluate a methodology that combines individual per-device measurements to form

high-confidence, statistically significant inferences of differentiation practices, includ-

ing fixed-rate bandwidth limits (i.e., throttling) and delayed throttling practices. Us-

ing this approach, I identify differentiation in both cellular and WiFi networks, com-

prising 30 ISPs in 7 countries. I also investigate the impact of throttling practices

on video streaming resolution for several popular video streaming providers. I find

that throttling limits the maximum video resolution, but interestingly, apps’ default

settings and available resolutions also play a significant role (Chapter 3).

Assessing the Privacy Benefits of Domain Name Encryption. I assess the

privacy benefits of two recent proposals, namely, DNS over HTTPS/ TLS (DoH/DoT)

and Encrypted SNI (ESNI), by considering the relationship between hostnames and

IP addresses, the latter of which are still exposed. I perform DNS queries from

nine vantage points around the globe to characterize this relationship. I quantify

the privacy gain offered by ESNI for different hosting and CDN providers using two

different metrics, the k-anonymity degree due to co-hosting and the dynamics of IP

address changes. I find that 20% of the domains studied will not gain any privacy

benefit since they have a one-to-one mapping between their hostname and IP address.

On the other hand, 30% will gain a significant privacy benefit with a k value greater

than 100, since these domains are co-hosted with more than 100 other domains.
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Domains whose visitors’ privacy will meaningfully improve are far less popular, while

for popular domains the benefit is not significant. Analyzing the dynamics of IP

addresses of long-lived domains, I find that only 7.7% of them change their hosting

IP addresses on a daily basis. I conclude by discussing potential approaches for

website owners and hosting/CDN providers for maximizing the privacy benefits of

ESNI (Chapter 4).

The work detailed in this dissertation addresses the challenges of studying Internet

censorship and traffic differentiation longitudinally and globally, and discusses the

privacy benefits of DoH/DoT and ESNI.
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CHAPTER 2

NETWORK INTERFERENCE - INTERNET
CENSORSHIP

2.1 Background

The Internet is crucial in today’s social and political movements by allowing peo-

ple to communicate with each other and practice their freedom of speech. Conse-

quently, oppressive regimes in different parts of the world monitor and restrict access

to the Internet. This is broadly known as Internet Censorship. We briefly review the

techniques that these censors use to block access to information online, the different

types of censors, and two different options for implementation as these are important

in developing a measurement platform to study Internet censorship.

2.1.1 Network-level Blocking Techniques

All attempts to interfere with website access can be considered as man-in-the-

middle (MITM) attacks on communications between a web browser and a web server.

Depending on the location and configuration of their MITM devices, censors may

interfere with traffic outside the borders of their own authority [47, 100, 239].

DNS manipulation. DNS resolution is the first step a web browser takes when

visiting a website. It involves resolving the domain name to its IP address. DNS was

not designed with security and privacy in mind, thus, DNS traffic is unencrypted and

less than 1% of it is authenticated [243]. Censors can forge response DNS packets

with non-routable IP addresses, the address of a server controlled by the censor or

error codes such as “host not found” (NXDOMAIN). The GFW is one such censor

that injects forged DNS responses to sensitive DNS queries.
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IP-based blocking. Once the web browser obtains the IP address of a web server,

it proceeds to establish a TCP connection to that server. Censors can drop packets

destined for an IP address known to host censored content, reply with a TCP reset

packet, or reroute them to a server controlled by the censor [131].

TCP packet injection. Some censors allow for the TCP handshake to be com-

pleted, and then inject a packet into the TCP stream, either breaking the connection

before the response arrives [247], or superseding the first response from the legiti-

mate server. This provides the opportunity for the censor to observe the first HTTP

request sent by the client, and thus be able to block access to individual pages [72].

Transparent proxy. Censors can use a “transparent proxy” that intercepts all

HTTP traffic leaving a country, and after decoding the content, they can choose

whether or not to forward it [77]. However, since these proxies act as TCP peers

that may modify HTTP traffic passing through them, they can be detectable [248].

These proxies allow a censor to make fine-grained decisions on how to block access to

content, but they can only be used on HTTP traffic.

2.1.2 On-path and In-path Censors

An on-path censor observes a copy of all traffic passing through a network link.

Thus, it cannot modify or discard packets that are already within the flow. It can

only react by injecting packets into the link. These types of censors are relatively

cheap and easy to deploy, however, they are easily detectable since injected packets

appear alongside the legitimate traffic.

On the other hand, in-path censors operate on the actual traffic passing through

a network link. Therefore, they can inject, modify, or discard packets. In order for

in-path equipment to perform such actions, they need to operate at the line-rate of

the backbone router, so they are more expensive, can have limited features, but are

harder to detect.
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2.1.3 Overt and Covert Censorship

Censors can opt to use either over or covert censorship depending on their in-

tentions. In overt censorship, the censor blocks access to a website by sending a

“block page” to the user instead of the material of the website. This can be done

using a transparent HTTP proxy, an injected TCP packet, or a DNS response that

redirects the web browser to a server controlled by the censor. In contrast, a covert

censor causes a network error that could have occurred for other reasons (such as

common network errors), thus avoids informing the user that the material was cen-

sored. Covert censorship can be accomplished by a transparent HTTP proxy, an

injected TCP reset packet, an injected DNS error or non-routable IP address, or by

discarding packets. Censors can block different categories of content in different ways.

For instance, Yemen has been observed to overtly block pornography, and covertly

block disfavored political content [116].

2.2 Related Work

The Internet filtering infrastructure of China, allegedly designed in the late 90s

under the Golden Shield project [224, 258], is a system used by the Chinese gov-

ernment to regulate the country’s domestic Internet access. The filtering system,

commonly referred to as the Great Firewall [114], consists of middleboxes distributed

across border autonomous systems [32, 72, 257], which are controlled in a centralized

fashion [48, 80, 114, 168, 224, 266]. There are several filtering modules developed to

control the free flow of information at different layers of the network stack, including

TCP/IP packet filtering [69, 88, 99, 187, 193, 253] and application-level keyword-

based blocking [69, 114, 207, 266].

Unencrypted and unauthenticated DNS traffic is widely targeted by censorship

systems to interrupt communications between users and remote destinations where

censored content or services are hosted [86, 182, 196, 222, 229]. Exploiting DNS
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Table 2.1. A high-level comparison of censored domains and forged IPs detected by
different studies/platforms. (*) The number of forged IPs from Satellite and OONI
includes “anomalies” due to domains hosted on CDNs and localized filtering policies.

Study/Platform Duration Longitudinal Tested Censored Forged Common

Domains Domains IPs Forged IPs

Zittrain et al. [266] Mar 2002 - Nov 2002 # 204K 1K 1 1
Lowe et al. [168] 2007 # 951 393 21 3
Brown et al. [48] Nov 2010 # 1 1 9 6
CCR’12 [229] Nov 2011 # 10 6 28
FOCI’14 [32] Aug 2013 - Apr 2014 # 130M 35.3K 174
Triplet Censors [183] Sep 2019 - May 2020 # 1M 24.6K 1,510 1,462
OONI [103] Apr 2020 - Dec 2020  3.3K 460 *710 593
Satellite [222] Apr 2020 - Dec 2020  3.5K 375 *2,391 1,613
GFWatch Apr 2020 - Dec 2020  534M 311K 1,781 -

insecurity, the GFW is designed as an on-path/man-on-the-side (MotS) system which

takes advantage of UDP-based DNS resolution to inject fake responses when censored

domains are detected in users’ DNS queries. In its early days, the GFW only used a

handful of forged IPs [168, 266]. However, later studies have noticed an increase in

the number of forged IPs, from nine in 2010 [48], 28 in 2011 [229], 174 in 2014 [32],

to more than 1.5K recently [183]. Except for [229] and [32] whose authors preferred

to remain anonymous and the dataset URLs provided in their papers are no longer

accessible, we were able to obtain data from other studies for comparison (Table 2.1).

A common drawback of these studies is that their experiments are conducted only

over limited time periods and the test domains are also static, i.e., obtained from a

snapshot of Alexa top list or zone files.

Other countries receiving case studies include Iran [29, 37], India [259], Pak-

istan [152, 180], Syria [61], and Egypt and Libya [76]. Whenever researchers have

had access to more than one vantage point within a country, they have found that

the policy is not consistently enforced. There is always region-to-region and ISP-to-

ISP variation.

Broader studies divide into two lines of research. One group of studies investigate

worldwide variation in censorship: for instance, whether censorship mainly interferes

with DNS lookups [196] or subsequent TCP connections, and whether the end-user is
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informed of censorship [125, 242]. In some cases, it has been possible to identify the

specific software in use [77, 144]. Another line of work aims to understand what is

censored and why [20, 49, 250], how that changes over time [30, 116], how people react

to censorship [156, 256], and how the censor might react to being monitored [49].

Due to the difficulties with relying on volunteers, several groups of researchers

have sought alternatives. CensMon [223] used Planet Lab nodes, Anderson et al. [30]

used RIPE Atlas nodes, Pearce et al. [196] use open DNS resolvers and VanderSloot

et al. [240] use open echo servers. Darer et al. [79] took advantage of the fact that the

Chinese Great Firewall will inject forged replies to hosts located outside the country.

Burnett and Feamster [50], Ensafi et al. [98], and Pearce et al. [195] all propose

variations on the theme of using existing hosts as reflectors for censorship probes,

without the knowledge of their operators, at different levels of the protocol stack.

Only a few studies have lasted more than a month. Five prominent exceptions

are Encore [50], IRIS [196], OONI [103], Quack[240], Satellite [222], and Censored

Planet [230] 1 all of which share goals similar to ICLab. Herdict [126] has also been

active for years, but simply aggregates user reports of inaccessible websites. It does

not test or report why the sites are inaccessible.

2.3 A Global, Longitudinal Internet Censorship Measure-

ment Platform

Researchers have studied Internet censorship for nearly as long as attempts to

censor contents have taken place. Most studies have however been limited to a short

period of time and/or a few countries; the few exceptions have traded off detail for

breadth of coverage. Collecting enough data for a comprehensive, global, longitudinal

perspective remains challenging.

1Censored Planet combines the techniques described in Satellite and Quack.
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In this chapter, we present ICLab, an Internet measurement platform specialized

for censorship research. It achieves a new balance between breadth of coverage and

detail of measurements, by using commercial VPNs as vantage points distributed

around the world. ICLab has been operated continuously since late 2016. It can cur-

rently detect DNS manipulation and TCP packet injection, and overt “block pages”

however they are delivered. ICLab records and archives raw observations in detail,

making retrospective analysis with new techniques possible. At every stage of pro-

cessing, ICLab seeks to minimize false positives and manual validation.

Within 53,906,532 measurements of individual web pages, collected by ICLab in

2017 and 2018, we observe blocking of 3,602 unique URLs in 60 countries. Using this

data, we compare how different blocking techniques are deployed in different regions

and/or against different types of content. Our longitudinal monitoring pinpoints

changes in censorship in India and Turkey concurrent with political shifts, and our

clustering techniques discover 48 previously unknown block pages. ICLab’s broad

and detailed measurements also expose other forms of network interference, such as

surveillance and malware injection.

2.3.1 Introduction

For the past 25 years, the Internet has been an important forum for people who

wish to communicate, access information, and express their opinions. It has also been

the theater of a struggle with those who wish to control who can be communicated

with, what information can be accessed, and which opinions can be expressed. Na-

tional governments in particular are notorious for their attempts to impose restrictions

on online communication [81]. These attempts have had unintentional international

consequences [31, 47, 173, 239], and have raised questions about export policy for net-

work management products with legitimate uses (e.g., virus detection and protection

of confidential information) that can also be used to violate human rights [77].
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The literature is rich with studies of various aspects of Internet censorship [29, 30,

31, 32, 37, 47, 50, 69, 76, 77, 99, 100, 103, 116, 144, 173, 186, 193, 195, 196, 222, 235,

239, 240, 257, 259] but a global, longitudinal baseline of censorship covering a variety

of censorship methods remains elusive. We highlight three key challenges that must

be addressed to make progress in this space:

Challenge 1: Access to Vantage Points. With few exceptions,2 measuring

Internet censorship requires access to “vantage point” hosts within the region of

interest.

The simplest way to obtain vantage points is to recruit volunteers [103, 116, 223,

242]. Volunteers can run software that performs arbitrary network measurements

from each vantage point, but recruiting more than a few volunteers per country and

retaining them for long periods is difficult. Further, volunteers may be exposed to

personal risks for participating in censorship research.

More recently, researchers have explored alternatives, such as employing open

DNS resolvers [196, 222], echo servers [240], Web browsers visiting instrumented

websites [50], and TCP side channels [97, 195]. These alternatives reduce the risk

to volunteers, and can achieve broader, longer-term coverage than volunteer labor.

However, they cannot perform arbitrary network measurements; for instance, open

DNS resolvers can only reveal DNS-based censorship.

Challenge 2: Understanding What to Test. Testing a single blocked URL

can reveal that a censorship system exists within a country, but does not reveal the

details of the censorship policy, how aggressively it is enforced, or all of the blocking

techniques used. Even broad test lists, like those maintained by the Citizen Lab [67],

may be insufficient [79]. Web pages are often short-lived, so tests performed in the

present may be misleading [250].

2China filters inbound as well as outbound traffic, making external observation simpler.

16



Challenge 3: Reliable Detection. Censors can prevent access to content in

several different ways. For instance, censors may choose to supply “block pages” for

some material, which explicitly notify the user of censorship, and mimic site outages

for other material (see §2.1.3) [78, 116].

Many recent studies focus on a single technique [50, 97, 195, 196, 222, 240]. This

is valuable but incomplete, because censors may combine different techniques to filter

different types of content.

As the Internet evolves and new modes of access appear (e.g., mobile devices),

censorship evolves as well, and monitoring systems must keep up [29, 178]. Ad-hoc

detection strategies without rigorous evaluation are prone to false positives [259].

For example, detecting filtering via DNS manipulation requires care to deal with

CDNs [196, 222] and detection of block pages requires taking regional differences in

content into account [144].

2.3.2 Contributions

We present ICLab, a censorship measurement platform that tackles these chal-

lenges. ICLab primarily uses commercial Virtual Private Network servers (VPNs) as

vantage points, after validating that they are in their advertised locations. VPNs offer

long-lived, reliable vantage points in diverse locations, but still allow detailed data

collection from all levels of the network stack. ICLab also deploys volunteer-operated

devices (VODs) in a handful of locations.

ICLab is extensible, allowing us to implement new experiments when new censor-

ship technologies emerge, update the URLs that are tested over time, and re-analyze

old data as necessary. To date ICLab has only been used to monitor censorship of

the web, but it could easily be adapted to monitor other application-layer protocols

(e.g., using techniques such as those in Molavi Kakhki et al. [178]). Besides ICLab

itself, and its collected data, we offer the following contributions:
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Global, longitudinal monitoring. Since its launch in 2016, ICLab has been con-

tinuously conducting measurements in 62 countries, covering 234 autonomous systems

(ASes) and testing over 45,000 unique URLs over the course of more than two years.

The platform has detected over 3,500 unique URLs blocked using a variety of censor-

ship techniques. We discuss our discoveries in more detail in Section 2.3.5.

Enhanced detection accuracy. ICLab collects data from all levels of the network

stack and detects multiple different types of network interference. By comparing

results across all the detection techniques, we can discover inaccuracies in each and

refine them. We have eliminated all false positives from our block page detector. DNS

manipulation detection achieves a false positive rate on the order of 10−4 when cross-

checked against the block page detector (see Section 2.3.4.1). Similar cross-checking

shows a negligible false positive rate for TCP packet injection (see Section 2.3.4.2).

Semi-automated block page detection. We have developed a new technique

for discovering both variations on known block pages and previously unknown block

pages. These explicit notifications of censorship are easy for a human to identify,

but machine classifiers have trouble distinguishing them from other short HTML

documents expressing an error message. Existing systems rely on hand-curated sets

of regular expressions, which are brittle and tedious to update.

ICLab includes two novel machine classifiers for short error messages, designed to

facilitate manual review of groups of suspicious messages, rather than directly deciding

whether each is a block page. Using these classifiers we discovered 48 previously

undetected block page signatures from 13 countries. We describe these classifiers and

their discoveries in more detail in Section 2.3.4.3.

2.3.3 System Architecture

ICLab is a platform for measuring censorship of network traffic. As shown in

Figure 2.1, it consists of a central control server and a set of vantage points distributed
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worldwide. The central server schedules measurements for each vantage point to

perform, distributes test lists, and collects measurement results for analysis. The

vantage points send and receive network traffic to perform each measurement, and

upload their observations to the central server. All analysis is done centrally after the

measurements have completed. Raw observations, including complete packet logs, are

archived so that new analysis techniques can be applied to old data. There are two

types of vantage points: volunteer-operated devices (VODs) configured by us and

installed in locations of interest by our volunteers,3 and VPN-based clients, which

forward traffic through commercial VPN proxies located in various countries.

2.3.3.1 Design Goals

We designed ICLab to achieve the following properties:

Global, continuous monitoring. The techniques used for Internet censorship, the

topics censored, and the thoroughness with which censorship is enforced are known to

vary both among [49, 77, 79, 116, 125, 196] and within [20, 98, 152, 255, 257] countries.

Therefore, the system should operate vantage points in multiple locations within each

of many countries, to produce a comprehensive global view of censorship. Censorship

may ratchet upward over time [81, 105], may change abruptly in response to political

events [76] and may even cease after governing parties change [116]. Therefore, the

system should perform its measurements continuously over a period of years, to detect

these changes as they happen.

Reproducible and extensible. The basic techniques for censoring network traffic

(described in §2.1.1) are well-known [242, 247] but new variations appear regularly [29,

100]. The short lifetime of “long tail” content means that the current content of a

website may bear no relationship to what it was when it was originally censored [250].

Therefore, the system needs to be extensible with new types of measurement, and

3Most of these are low-cost Raspberry Pi devices.
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Packet Logs
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(2) Perform measurements 
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Figure 2.1. Architecture of ICLab. (1) The central server sends a measurement
schedule along with an associated test list to vantage points. (2) The vantage points
perform measurements. (3) Collected data is uploaded to the central server. (4) Cen-
sorship detection is done centrally.

should record as much information as possible with each measurement (e.g., packet

traces and detailed contextual information).

Minimal risk to volunteers. Censorship monitoring involves accessing material

that is forbidden in a particular country, from that country, and provoking a response

from the censor. The response we expect is one of the MITM attacks described in

§2.1.1, but legal or extralegal sanctions aimed at the volunteer operating the vantage

point are also possible. The risk may be especially significant for volunteers already

engaged in human rights reporting or advocacy. Use of commercial VPNs as vantage

points is intended to mitigate these risks. VODs are only deployed in locations where

we believe legal or extralegal sanctions are unlikely, and we obtain informed consent

from the volunteers who operate them.

2.3.3.2 Vantage Points

Of ICLab’s 281 vantage points, 264 are VPN-based, obtaining access to locations of

interest via commercial VPN services. 17 vantage points are VODs. The measurement

software is the same for both types of vantage; the only difference is that VPN-based

vantages route their traffic through a VPN while performing measurements.
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VPN-based vantages. ICLab uses VPN-based vantages whenever possible, be-

cause of their practical and ethical advantages. We do not need to recruit volunteers

from all over the world, or manage physical hardware that has been distributed to

them, but we still have unrestricted access to the network, unlike, for instance, phone

or web applications [50, 103]. The VPN operator guarantees high availability and

reasonable bandwidth, and they often offer multiple locations within a country. For

75% of the countries where we use VPN-based vantages, the VPNs give us access to

at least two ASes within that country.

Accessible ASes per country
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Figure 2.2. CDF of number of accessible AS(es) per country

Censorship policies are known to vary from region to region and network to net-

work within a single country [20, 98, 152, 255, 257]. Therefore, comprehensive mon-

itoring requires vantage points located in diverse locations within a country. Some

VPN services offer servers in several physical locations within a single country, making

this simple. Even when they don’t advertise several physical locations, we have found

that they often load-balance connections to a single hostname over IP addresses in

several different ASes and sometimes different physical locations as well. When possi-

ble, we increase diversity further by subscribing to multiple VPN services. Figure 2.2

shows a CDF of the number of networks we can access in each country, combining all
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the above factors; we are able to access two or more networks in 75% of all countries,

and three or more networks in 50%.

On the ethical side, a commercial VPN operator is a company that understands

the risks of doing business in each country it operates in. It is unlikely that they

would deploy a server in a country where the company or its employees might suffer

legal or extralegal sanctions for the actions of its users.

A disadvantage of VPNs is that they only supply a lower bound on the censorship

experienced by individuals in each country, because their servers are hosted in com-

mercial data centers. There is some evidence that network censorship is less aggres-

sively performed by data centers’ ISPs than by residential ISPs [22, 257]. According

to the CAIDA AS classification [53], 41% of the networks hosting our VPN-based

vantages are “content” networks, which are the most likely to be subject to reduced

levels of censorship. However, we have visibility into at least one other type of AS

in 83% of the countries we can observe. In countries where we have both VPNs and

VODs, we have observed identical block pages from both, indicating that all types of

ASes are subject to similar blocking policies in those countries.

User-hosted VPNs (e.g., Geosurf [113], Hola [138], Luminati [171]) would offer

access to residential ISPs, but ICLab does not use them, as they have all the ethical

concerns associated with VODs, with less transparency. Also, there are reports of

illicit actions by the operators of these VPNs, such as deploying their software as

a viral payload, and facilitating distributed denial of service (DDoS) attacks [176],

making it even more unethical to use these services.

Commercial VPN services cannot be relied on to locate all of their servers in the

countries where they are advertised to be [251]. ICLab therefore checks the location

of each VPN server before using it for measurements. We assume that packets are not

able to travel faster than 153 km/ms (0.5104 2) over long distances. We measure the

round-trip time from each VPN server to a set of landmark hosts in known locations,
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drawn from the RIPE Atlas measurement constellation [217]. If any packet would

have had to travel faster than 153 km/ms to reach the advertised country and return

in the measured time, we assume the server is not in its advertised location, and we

do not use it as a vantage point.

The VPN services we subscribe to collectively advertise endpoints in 216 countries.

Our checker is only able to confirm the advertised location for 55 countries (25.5% of

the total). Compared to the results reported by Weinberg et al. [251], who tackled the

same problem with more sophisticated techniques, our method rejects significantly

more proxies (10% more on average when we experiment across multiple providers).

Possibly some of those proxies could be used after all, but we do not want to attribute

censorship to the wrong country by accident, so we are being cautious.

Volunteer-operated device vantages. VODs are more difficult to keep running,

and require a local volunteer comfortable with the risks associated with operating

the device. Since ICLab does not collect personally identifiable information about the

volunteers, our IRB has determined that this project is not human subjects research.

However, we are guided by the principles of ethical human subjects research, particu-

larly the need to balance potential benefits of the research against risks undertaken by

volunteers. Most of our VODs have been deployed opportunistically through collab-

orations with NGOs and organizations interested in measuring Internet censorship

from a policy perspective. For each deployed VOD, we maintain contact with the

volunteer, and monitor the political situation in the country of deployment. We have

deemed some countries too risky (for now) to recruit volunteers in (e.g., Iran, Syria).

Freedom House and Reporters Without Borders Scores. The international

organization Freedom House, which promotes civil liberty and democracy worldwide,

issues a yearly report on “freedom on the Net,” in which they rate 65 countries on

the degree to which online privacy and free exchange of information online are upheld

in that country [105]. Each country receives both a numerical score and a three-way
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Table 2.2. Country Coverage of ICLab. The number of countries and ASes on each
continent where we have vantage points with validated locations, since 2017. Oceania
includes Australia. VPNs: virtual private network servers. VODs: volunteer-operated
devices. NF, PF, F: of the countries with vantage points, how many are politically
not free, partially free, or free.

Continent VPNs VODs Countries ASes NF PF F

Asia 64 4 14/32 54 5 7 2
Africa 9 10 9/72 19 1 6 2
N. America 87 1 5/17 81 0 1 4
S. America 9 0 5/20 6 1 3 1
Europe 83 2 27/42 64 1 5 21
Oceania 12 0 2/ 6 11 0 0 2

Total 264 17 62/189 234 8 22 32

classification: 16 of the 65 countries are considered “free,” 28 are “partly free,” and 21

are “not free.” Unfortunately, 33 of the countries studied by ICLab are not included in

this report. The international organization Reporters Without Borders (RWB) issues

a similar yearly report on freedom of the press. This report covers 189 countries and

territories, including all 65 of the countries rated by Freedom House, and all 62 of the

countries studied by ICLab [213] Each country receives a numerical score and a color

code (best to worst: 16 countries are coded white, 42 yellow, 59 orange, 51 red, and

21 black). Press freedom is not the same as online freedom, and the methodologies

behind the two reports are quite different, but the scores from the two reports are

reasonably well correlated (Kendall’s g = 0.707, ? ≈ 10−16). We used a simple linear

regression to map RWB scores onto the same scale as FH scores, allowing us to label

all of the countries studied by ICLab as “free” (72), “partly free” (85), or “not free”

(32) in the same sense used by Freedom House.

Breadth of coverage. As of this writing, ICLab has VPN-based vantage points

in 55 countries, and volunteer-operated clients in 13 countries. 6 countries host both

types of clients, so ICLab has vantage points in 62 countries overall. ICLab seeks to

achieve both geographic and political diversity in its coverage. Table 2.2 summarizes

our current geographic diversity by continent, and political diversity by a combination
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of two scores of political freedom, developed by Freedom House [105] and Reporters

Without Borders [213].

It is easier to acquire access to vantage points in Europe, North America, and East

Asia than in many other parts of the world. We have plans for expanded coverage

in Africa and South America in the near future, via additional VPN services. It is

also easier to acquire access to vantage points in “free” and “partially free” than “not

free” countries, because it is often too risky for either VPN services or volunteer-

operated devices to operate in “not free” countries. Expanding our coverage of “not

free” countries is a priority for future development of ICLab, provided we can do it

safely.

Internet censorship does happen in the “partly free” and “free” countries, and is

not nearly as well documented as it is for specific “not free” countries (most notably

China). Our broad coverage of these classes of countries gives us the ability to track

changes over time, across the full spectrum of censorship policy, worldwide.

2.3.3.3 Test Lists

At present, ICLab’s measurements are focused on network-level interference with

access to websites. ICLab’s vantage points test connectivity to the websites on three

lists: the Alexa global top 500 websites (ATL) [25], the websites identified as globally

sensitive by the Citizen Lab [67] and the Berkman Klein Center [40]4 (CLBL-G),

and, for each country, the websites identified as locally sensitive in that country by

Citizen Lab and Berkman Klein (CLBL-C). We only use the global top 500 sites

from Alexa’s ranking, because its “long tail” is unstable [162, 221]. All test lists are

updated weekly.

4The lists maintained by Citizen Lab and Berkman Klein are formally independent but have
substantial overlap, so we combine them.
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ICLab has tested a total of 47,000 unique URLs over the course of its operation.

Because all of the vantage points test ATL and CLBL-G, there is more aggregated

data for these sites: 40% of our data is from sites on ATL, 40% from sites on CLBL-G,

and 20% from sites on CLBL-C. Individual vantage points test anywhere from 3,000

to 5,700 URLs per measurement cycle, depending on the size of CLBL-C for the

vantage point’s country. This is by no means the complete set of sites blocked in any

one country [79], and we have plans to broaden our testing, as described further in

Section 2.3.8.

2.3.3.4 Data Collection

A measurement of a URL is an attempt to perform an HTTP GET request to

that URL, recording information about the results from multiple layers of the net-

work stack: (1) The complete DNS request and response or responses for the server

hostname (using both a local resolver and a public DNS resolver). (2) Whether or

not a TCP connection succeeded. (3) For HTTPS URLs, the certificate chain trans-

mitted by the server. (4) The full HTTP response (both headers and body). (5) A

traceroute to the server. (6) A comprehensive packet trace for the duration of the

measurement. This allows us to identify anomalies that would not be apparent from

application-layer information alone. For instance, when packets are injected by on-

path censors, we can observe both the injected packets and the legitimate responses

they conflict with (see Section 2.3.4.2).

Each vantage point measures connectivity to all of the sites on its test list at least

once every three days, on a schedule controlled by the central server. Depending on

the size of the test list, a cycle of measurements typically runs for 1–2 hours.

Figure 2.3 depicts ICLab’s measurements over time in each country. Operating

ICLab over a multi-year period has not been easy; several outages are visible in

Figure 2.3. For instance, we lost access to our vantage points in Iran in May 2017 due
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Figure 2.3. Measurements since 2017 by country. For each of the 62 countries where
we have, or had, vantage points since 2017, the total number of measurements per
week.

to a change in the international sanctions imposed on Iran, and we suffered a year-

long, multi-country outage due to one VPN provider making configuration changes

without notice. The latter incident led us to improve our internal monitoring and our

tracking of VPN configuration changes.

Between January 2017 and September 2018, ICLab conducted 53,906,532 mea-

surements of 45,565 URLs in 62 countries and 234 ASes. We publish our data for use

by other researchers,5 with periodic updates as we continue operation.

2.3.3.5 Control Nodes

Many tests of censorship rely on comparison of measurements between the van-

tage point and a “control” location, where there is not anticipated to be censorship.

5Available online at https://iclab.org/.
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We repeat all the measurements performed by our vantage points on a control node

located in an academic network in the USA. This network allows access to all the sites

we test for accessibility. The control node has also suffered outages. In this paper,

we use public data sets compiled by other researchers to fill in the gaps, as described

in Section 2.3.4. We have since deployed three more control nodes in Europe, Asia

and the USA to improve reliability and geographic diversity.

2.3.4 Censorship Detection

Next, we describe how ICLab detects manipulated DNS responses (§2.3.4.1), pack-

ets injected into TCP streams (§2.3.4.2) and HTML-based block pages (§2.3.4.3). All

of ICLab’s detection algorithms are designed to minimize both false negatives, in

which a censored site is not detected, and false positives, in which ordinary site or

network outages, or DNS load balancing are misidentified as censorship [97, 116, 144,

247].

2.3.4.1 DNS Manipulation

To access a website, the browser first resolves its IP address with a DNS query. To

detect DNS manipulation, ICLab records the DNS responses for each measurement,

and compares them with responses to matching DNS queries from our control node,

and with DNS responses observed by control nodes OONI [103] operates. ICLab

applies the following heuristics, in order, to the observations from the vantage point

and the control nodes.

Vantage point receives two responses with different ASes. If a vantage

point receives two responses to a DNS query, both with globally routable addresses,

but belonging to two different ASes, we label the measurement as DNS manipulation.

This heuristic detects on-path censors who inject a packet carrying false addresses [32].

Requiring the ASes to differ avoids false positives caused by a DNS load balancer

picking a different address from its pool upon retransmission.
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Vantage point receives NXDOMAIN or non-routable address. If a vantage

point receives either a “no such host” response to a query (NXDOMAIN, in DNS

protocol terms [43]), or an address that is not globally routable (e.g., 10.x.y.z) [42],

but the control nodes consistently receive a globally routable address (not necessarily

the same one) for the domain name, over a period of seven days centered on the

day of the vantage point’s observation, we label the test as DNS manipulation. The

requirement for consistency over seven days is to avoid false positives on sites that

have been shut down, during the period where a stale address may still exist in DNS

caches.

Vantage point receives addresses from the same AS as control nodes. If a

vantage point receives a globally routable address, and the control nodes also receive

globally routable addresses assigned to the same AS (not necessarily the exact same

address), we label the measurement as not DNS manipulation. Variation within a

single AS is likely to be due to load-balancing over a server pool in a single location.

Vantage point and control nodes receive addresses in different ASes. The

most difficult case to classify is when the vantage point and the control nodes receive

globally routable addresses assigned to different ASes. This can happen when DNS

manipulation is used to redirect traffic to a specific server (e.g., to display a block

page). However, it can also happen when a content provider or CDN directs traffic

to data centers near the client [196].

We distinguish censors from CDNs using the observation that censors tend to

map many blocked websites onto just a few addresses [31, 116]. If a set of websites

resolve to a single IP address from the vantage point, but resolve to IPs in more

than \ ASes from the control nodes, we count those websites as experiencing DNS

manipulation. \ is a tunable parameter which we choose by cross-checking whether

these measurements also observed either a block page or no HTTP response at all.

Taking this cross-check as ground truth, Figure 2.4 shows how the false positive
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Figure 2.4. DNS manipulation false positives. The false positive rate for the DNS
manipulation detector, as a function of the threshold parameter \.

rate for DNS manipulation varies with \. For the results in Section 2.3.5, we use a

conservative \ = 11 which gives a false positive rate on the order of 10−4.

2.3.4.2 TCP Packet Injection

Censors may also allow DNS lookup to complete normally, but then inject packets

that disrupt the TCP handshake or subsequent traffic. ICLab detects this form of

censorship by recording packet traces of all TCP connections during each test, and

analyzing them for (1) evidence of packet injection, and (2) evidence of intent to

censor (e.g., block page content or TCP reset flags in injected packets). By requiring

both types of evidence, we minimize false positives. Short error messages delivered by

the legitimate server will not appear to be injected, and packets that, for innocuous

reasons, appear to be injected, will not display an intent to censor.

Evidence of packet injection. If an end host receives two TCP packets with

valid checksums and the same sequence number but different payloads, the operating

system will generally accept the first packet to arrive, and discard the second [199].

An on-path censor can therefore suppress the server’s HTTP response by injecting a

packet carrying its own HTTP response (or simply an RST or FIN), timed to arrive

first. Because ICLab records packet traces, it records both packets and detects a

conflict. This is not infallible proof of packet injection; it can also occur for innocuous

reasons, such as HTTP load balancers that do not send exactly the same packet when

they retransmit.
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Figure 2.5. Classification of packet anomalies by comparison to control observations.

Intent to censor: RST, FIN, or block page. When we detect a pair of conflicting

packets, we inspect them for evidence of intent to censor. An injected packet can

disrupt/censor communication by carrying a TCP reset (RST) or close (FIN) flag,

causing the client to abort the connection and report a generic error [72, 247]; or it can

carry an HTTP response declaring the site to be censored (a “block page,” discussed

further in Section 2.3.4.3), which will be rendered instead of the true contents of the

page the client requested [77, 144].

As with DNS manipulation, we compare each observation from a vantage point

that shows evidence of packet injection, with matching observations from a control

node. We apply the following heuristics, in order, to pairs of observations. The

various outcomes of these heuristics are shown in Figure 2.5.

No matching control observation. When a TCP stream from the vantage

point shows evidence of packet injection, but does not seem to correspond to any

observation taken by the control node, we abandon any attempt to classify it. This

is the “No record for URL” row of Figure 2.5.
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This filtering is necessary because of a limitation in our packet trace analyzer.

When a website transfers all of its traffic to another domain name, either via a

CNAME record in DNS or using HTTP redirects, the trace analyzer cannot tell that

TCP connections to the second domain name are associated with an attempt to test

the first domain name. We conservatively do not consider these cases as censorship.

Packet collision after handshake, with RST or FIN. When a TCP stream

from the vantage point shows evidence of collisions in TCP sequence numbers after

successful completion of the three-way handshake, one side of the collision has its

RST or FIN bit set and the other side has neither bit set, we label the measurement

as censored by packet injection, regardless of what the control node observed. This

is the “connection disrupted” column of Figure 2.5. We have high confidence that all

of these are true positives.

Packet collision after handshake, with payload conflict. When a TCP

stream from the vantage point shows evidence of TCP sequence number collisions after

successful completion of the three-way handshake, but neither side of the collision

has the RST or FIN bit set, we inspect the contents of the packets for a block page

signature, as described in §2.3.4.3. We label the measurement as censored by packet

injection only if a known block page signature appears in one of the packets. These

cases are the “payload collision (blockpage)” and “payload collision (no blockpage)”

columns of Figure 2.5. Again, we have high confidence that these are true positives

and negatives.

Matching RST or ICMP unreachable instead of SYN-ACK. When a TCP

SYN from the vantage point receives either a TCP RST or an ICMP unreachable

packet, instead of a SYN-ACK, and the control node observes the same network

error, we conclude the site is down for everyone, and label the measurement as not

censored. These cases are the matching “connection refused” and “host unreachable”
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cells on the left-hand side of Figure 2.5, and we have high confidence that they are

true negatives.

RST or ICMP unreachable instead of SYN-ACK, at vantage only. When a

TCP SYN from the vantage point receives either a TCP RST or an ICMP unreachable

packet in response, instead of a SYN-ACK, but the control node is able to carry out

a successful HTTP dialogue, this probably indicates IP-based censorship observed

by the vantage point. However, there are other possible explanations, such as a

local network outage at the vantage point, or a site blocking access from specific IP

addresses on suspicion of malice [175]. Manual spot-checking suggests that many, but

not all, of these observations are censorship. These cases are labeled as “probable

censorship” in Figure 2.5, and we discuss them separately in Section 2.3.5.

Mismatched network errors, or timeout or DNS error at control node.

When the vantage point and the control node both received a network error in re-

sponse to their initial SYN, but not the same network error; when the control node’s

initial SYN received no response at all; and when the control node was unable to

send a SYN in the first place because of a DNS error; we cannot say whether the

measurement indicates censorship. These cases are the cells labeled “uncertain” in

the lower left-hand corner of Figure 2.5. We are conservative and do not consider

these as censorship in our analysis.

2.3.4.3 Block Page Detection and Discovery

Block page contents vary depending on the country and the technology used for

censorship. Known block pages can be detected with regular expressions applied to

the TCP payloads of suspicious packets, but these will miss small variations from the

expected text, and are no help at all with unknown block pages.

Nonetheless, ICLab uses a set of 308 regular expressions to detect known block

pages. We manually verified these match specific, known block pages and nothing
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else. 40 of them were developed by the Citizen Lab [68], 24 by OONI [103], 144 by

Quack [240], and 100 by us.

Anomalous packets that do not match any of these regular expressions are exam-

ined for block page variations and unknown block pages, as described below; when

we discover a block page that was missed by the regular expressions, we write new

ones to cover them.

Self-contained HTTP response. To deliver a block page, the protocol struc-

ture of HTTP requires a censor to inject a single packet containing a complete, self-

contained HTTP response. This packet must conflict with the first data packet of

the legitimate response. Therefore, only packets which are both involved in a TCP

sequence number conflict, and contain a complete HTTP response, are taken as can-

didate block pages for the clustering processes described next.

HTML structure clusters. The HTML tag structure of a block page is charac-

teristic of the filtering hardware and software used by the censor. When the same

equipment is used in many different locations, the tag structure is often an exact

match, even when the text varies. We reduce each candidate block page to a vector

of HTML tag frequencies (1 <body>, 2 <p>, 3 <em>, etc.) and compare the vectors

to all other candidate block pages’ vectors, and to vectors for pages that match the

known block page regular expressions. When we find an exact match, we manually

inspect the matching candidates and decide whether to add a new regular expression

to the detection set. Using this technique we discovered 15 new block page signatures

in five countries.

Textual similarity clusters. Within one country, the legal jargon used to justify

censoring may vary, but is likely to be similar overall. For example, one Indian ISP

refers to “a court of competent jurisdiction” in its block pages, and another uses the

phrase “Hon’ble Court” instead. Small variations like this are evidently the same

page to a human, but a regular expression will miss them. We apply locality-sensitive
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hashing (LSH) [263] to the text of the candidate block pages, after canonicalizing

the HTML structure. LSH produces clusters of candidate pages, centered on pages

that do match the known block page regular expressions. As with the tag frequency

vectors, we manually inspect the clusters and decide whether to add new regular

expressions to the curated set. Using this technique, we discovered 33 new block

page signatures in eight countries. Figure 2.6 shows an example group of block pages

detected by textual similarity clustering, including two variations on the Indian legal

jargon mentioned in Section 2.3.4.3, but also messages mimicking generic HTTP

server errors. This demonstrates how similarity clustering can detect covert as well

as overt censorship.

HTML structure Visible message

ACK+PSH

HTTP/1.1 200 OK

Connection: close

Content-Length: nnnn

Content-Type: text/html; charset="utf-8"

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML

4.01//EN">

<html>

<head<title></title></head>

<body><h0><font color="black">

visible message

</font></h0></body></html>

\This URL has been blocked under instructions

of a

competent Government Authority or in

compliance with

the orders of a Court of competent

jurisdiction.

***This URL has been blocked under

Instructions of the

Competent Government Authority or Incompliance

to

the orders of Hon’ble Court.*** [sic]

*\Error 403: Access Denied/Forbidden"*

404. That’s an error.

HTTP Error 404 - File or Directory not found

HTTP Error 404 - File or Directory not found =

http://...

Figure 2.6. Example cluster of block pages. All of the messages in the right-hand
column were observed with the HTTP response headers and HTML structure shown
on the left.

URL-to-country ratio. To discover wholly unknown block pages we take each

LSH cluster that is not centered on a known block page, count the number of URLs

that produced a page in that cluster, and divide by the number of countries where

a page in that cluster was observed. This is essentially the same logic as counting

the number of websites that resolve to a single IP from a test vantage point but

not a control vantage point, but we do not use a threshold. Instead, we sort the

clusters from largest to smallest URL-to-country ratio and then inspect the entire list
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manually. The largest ratio associated with a newly discovered block page was 286

and the smallest ratio was 1.0.

2.3.5 Findings

Between January 2017 and September 2018, ICLab conducted 53,906,532 mea-

surements of 45,565 URLs in 62 countries. Because we do not have continuous cov-

erage of all these countries (see §2.3.3.4), in this paper we present findings only for

countries where we successfully collected at least three months’ worth of data prior

to September 2018. Among those countries, five stand out as conducting the most

censorship overall: Iran, South Korea, Saudi Arabia, India, and Kenya. When con-

sidering specific subsets of our data, sometimes Turkey or Russia displaces one of

these five.

2.3.5.1 Specific Results

We first present details of our observations for each of the three censorship tech-

niques that we can detect.

DNS manipulation. We observe 15,007 DNS manipulations in 56 countries, ap-

plied to 489 unique URLs. 98% of these cases received NXDOMAIN or non-routable

addresses.

Figure 2.7 compares DNS responses from a vantage point’s local recursive re-

solver with those received by the same vantage point from a public DNS utility (e.g.,

8.8.8.8). The upper left-hand cell of this chart counts cases where there is no DNS

censorship; the other cells in the left-hand column count cases where censorship is

being performed by the local DNS recursive resolver. The top rightmost cell counts

the number of observations where censorship is being performed only by a public

DNS utility, and the bottom rightmost cell counts cases where censorship is being

performed by both a local recursive resolver and a public DNS utility. We observe

censorship by public DNS utilities only for a few sites from Russia, Bulgaria, and Iran.
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Figure 2.7. Comparison of DNS responses for the same domain between local and
public nameservers from the same vantage point.

The middle three columns could be explained as either censorship or as unrelated DNS

failures.

Packet injection. We observe 19,493,925 TCP packet injections across 55 coun-

tries, applied to 11,482 unique URLs. However, after applying the filtering heuristics

described in §2.3.4.2, only 0.7% of these are definitely due to censorship: 143,225 in-

jections, in 54 countries, applied to 1,205 unique URLs. (The numbers in Figure 2.5

are higher because they do not account for all the filtering heuristics.) Packet injec-

tions are usually used to disrupt a connection without delivering a block page; block

pages are delivered by only 3.4% of the injections we attribute to censorship.

Another 15,589,882 packet injections—58% of the total—are network errors re-

ceived instead of a SYN-ACK packet. These are described as “probable censorship”

in Figure 2.5. They could indicate an in-path censor blocking hosts by IP address,

but there are many other possible explanations. Our synthetic results (below) might

be quite different if we were able to classify these more accurately.

Block pages. We observe 232,183 block pages across 50 countries, applied to 2,782

unique URLs. Iran presents block pages for 24.9% of the URLs it censors, more than

any other country. In all of the countries we monitor, block pages are most likely to

be used for URLs in the pornography and news categories (see below).
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Table 2.3. Censorship by Test List and Category. For each of the three test lists
we use (see §2.3.3.3), the top ten countries censoring the most URLs from that list,
the top three FortiGuard categories for their censored URLs (abbreviations defined
in Table 2.4), and the percentage of URLs from that list that are censored.

Overall Alexa Global (ATL) Globally Sensitive (CLBL-G) Per-Country Sensitive (CLBL-C)
Country Category Pct. Country Category Pct. Country Category Pct. Country Category Pct.

Iran NEWS 13.1% Iran NEWS 14.0% Iran PORN 11.6% Iran NEWS 21.0%
PORN 9.2% PORN 12.7% NEWS 9.4% BLOG 17.6%
BLOG 7.5% ENT 10.3% PROX 6.8% POL 7.2%

South Korea PORN 15.4% South Korea SHOP 14.2% Saudi Arabia PORN 31.0% India ENT 19.0%
NEWS 8.4% PORN 13.7% GAMB 13.5% STRM 14.3%
ORG 7.4% NEWS 10.8% PROX 12.2% NEWS 10.8%

Saudi Arabia PORN 29.5% Saudi Arabia PORN 70.0% South Korea PORN 15.6% Saudi Arabia NEWS 54.0%
NEWS 11.3% ILL 6.6% ORG 10.4% POL 7.7%
GAMB 10.1% GAMB 6.6% NEWS 5.7% RELI 7.7%

India ENT 13.3% Turkey PORN 66.0% Kenya PORN 14.5% Russia BLOG 16.5%
STRM 10.8% ILL 4.0% GAMB 10.8% NEWS 14.4%
NEWS 10.4% FILE 4.0% PROX 9.0% GAMB 12.4%

Kenya PORN 15.5% India ILL 35.5% Turkey PORN 47.0% Turkey NEWS 29.4%
GAMB 10.1% IT 8.8% GAMB 22.6% PORN 13.7%
PROX 8.3% STRM 6.6% ILL 3.2% GAMB 9.8%

Turkey PORN 40.2% Kenya ILL 28.1% India NEWS 10.3% South Korea PORN 16.7%
GAMB 16.6% PORN 25.0% ILL 9.2% NEWS 16.1%
NEWS 9.2% GAME 6.2% IT 8.0% SHOP 11.8%

Russia GAMB 23.4% Russia PORN 26.3% United States NEWS 8.0% China NEWS 46.1%
PORN 10.0% SHOP 21.0% IT 6.9% ORG 46.1%
NEWS 7.6% STRM 10.5% SEAR 6.3% RELI 7.7%

Uganda PORN 42.6% Japan SEAR 19.0% Uganda PORN 42.6% Hong Kong ORG 100.0%
ADUL 11.7% NEWS 9.5% ADUL 11.7%
LING 10.3% GAME 9.5% LING 10.3%

Netherlands NEWS 13.4% Netherlands ILL 15.3% Russia GAMB 39.4% Poland GAMB 100.0%
ILL 8.5% NEWS 15.3% PORN 14.9%
SEAR 8.5% SEAR 15.3% RELI 5.3%

Japan NEWS 11.0% Sweden SEAR 27.2% Netherlands NEWS 13.0% Singapore PROX 66.6%
GAME 9.6% BLOG 9.1% ILL 7.2% GAME 33.3%
SEAR 9.6% STRM 9.1% GAME 7.2%

2.3.5.2 Synthetic Analysis

Combining observations of all three types of censorship gives us a clearer picture

of what is censored in the countries we monitor, and complements missing events in

each.

We use the “FortiGuard” URL classification service, operated by FortiNet [6], to

categorize the contents of each test list. This service is sold as part of a “web filter” for

corporations, which is the same software as a nation-state censorship system, but on

a smaller scale. The URLs on all our lists, together, fall into 79 high-level categories

according to this service; the 25 most common of these, for URLs that are censored

at least once, are listed in Table 2.4, along with the abbreviated names used in other

tables in this section.
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Table 2.4. FortiGuard Categories and Abbreviations. The 25 most common cat-
egories for the URLs on our test lists that were censored at least once, with the
abbreviated names used in Tables 2.3 and 2.5, and the percentage of URLs in each
category. CLBL includes both global and per-country test lists.

Abbrev. Category ATL % CLBL %

ADUL Other Adult Materials 0.91 0.77
ARM Armed Forces 0.76 0.31
BLOG Personal websites and blogs 2.00 8.97
DOM Domain Parking 0.21 0.28
ENT Entertainment 2.66 2.25
FILE File Sharing and Storage 1.89 0.55
GAME Games 2.62 0.83
GAMB Gambling 1.73 1.18
HEAL Health and Wellness 2.02 1.04
ILL Illegal or Unethical 1.85 0.40
IM Instant Messaging 0.49 0.14
IT Information Technology 9.31 4.17
ITRA Internet radio and TV 0.39 0.59
LING Lingerie and Swimsuit 0.76 0.14
NEWS News and Media 10.03 18.87
ORG General Organizations 6.82 4.77
POL Political Organizations 1.56 5.28
PORN Pornography 3.87 2.45
PROX Proxy Avoidance 1.71 0.57
RELI Global Religion 3.19 2.58
SEAR Search Engines and Portals 3.93 2.36
SHOP Shopping 4.86 1.40
SOC Social Networking 1.19 1.34
SOLI Society and Lifestyles 0.76 0.97
STRM Streaming Media and Download 1.83 1.42

Table 2.3 shows the three most censored categories of URLs for the five countries

conducting the most censorship, based on the percentage of unique URLs censored

over time. It is divided into four columns, showing how the results vary depending

on which of our test lists are considered: all of them, only ATL, only CLBL-G, or

only CLBL-C.

Iran takes first place in all four columns, and Saudi Arabia is always within the top

three. The other countries appearing in Table 2.3 are within the top five only for some

test lists. The top three categories blocked by each country change somewhat from list

to list. For instance, pornography is much less prominent on the country-specific lists

than on the global list. Iran’s censorship is more uniformly distributed over topics
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Table 2.5. Censorship Variation by Technique. For each of the three techniques we
can detect, the five countries observed to censor the most URLs using that technique,
and the top three FortiGuard categories for those URLs (abbreviations defined in
Table 2.4). Percentages are of all unique URLs tested.

Technique Country Categories Pct.

Block page Iran NEWS, PORN, BLOG 24.95%
Saudi Arabia PORN, NEWS, GAMB 11.1%
India ENT, STRM, NEWS 6.4%
Kenya PORN, GAMB, PROX 4.8%
Turkey PORN, GAMB, NEWS 4.6%

DNS Iran BLOG, PORN, PROX 5.5%
manipulation Uganda PORN, ADUL, LING 1.7%

Turkey ILL, GAMB, STRM 0.3%
Bulgaria ILL, ARM, DOM 0.2%
Netherlands ILL, IM, DOM 0.2%

TCP packet South Korea PORN, ORG, NEWS 9.3%
injection India NEWS, ILL, IT 2.3%

Netherlands NEWS, SEAR, GAME 0.9%
Japan NEWS, GAME, SEAR 0.9%
Australia SEAR, NEWS, ILL 0.8%

than the other countries, where censorship is concentrated on one or two categories.

These results demonstrate how the choice of test lists can change observations about

censorship policy.

Table 2.5 shows the top five countries conducting the most censorship, for each of

the three censorship techniques that ICLab can detect, with the top three categories

censored with that technique. This shows how censors use different techniques to

censor different types of content, as we mentioned in §2.3.1. For example, Turkey uses

DNS manipulation for categories ILL and STRM, but uses block pages for PORN and

NEWS.

Figure 2.8 shows how often the various blocking techniques are combined. For

instance, in Iran we detect some URLs being redirected to a block page via DNS

manipulation (comparing with Table 2.5, we see that these are the URLs in the

PORN and BLOG categories), but for many others, we detect only the block page.
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Figure 2.8. Combinations of Censorship Techniques. For the five countries per-
forming the most censorship overall, which combinations of the three phenomena
ICLab can detect are observed. Except for “TOTAL,” each group of bars is mutually
exclusive—URLs counted under “DNS manipulation and packet injection” are not
also counted under either “DNS manipulation” or “packet injection.”

This could be because Iran uses a technique we cannot detect for those URLs (e.g.,

route manipulation), or because our analysis of packet injection is too conservative

(see Section 2.3.4.2).

2.3.5.3 Longitudinal Analysis

Collecting data for nearly two years gives us the ability to observe changes in

censorship over time. Figure 2.9 shows censorship trends for the six countries ICLab

can monitor that block the most URLs from the global test lists (ATL and CLBL-G),

plus a global trend line computed from aggregate measurements from all the other

monitored countries. We do not have complete coverage for Iran and Saudi Arabia,

due to the outages mentioned in §2.3.3.4. The large dip in several of the trend lines in

February 2017 is an artifact due to month-to-month churn within the Alexa rankings

(see Scheitle et al. [221]).
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Figure 2.9. Logarithmic Plot of Longitudinal Trends. Changes over time in the
level of censorship, within the six countries where we observe the most censorship of
URLs from ATL and CLBL-G, plus the aggregate of all other monitored countries.

The global trend line shows a steady decreasing trend, which we attribute to the

rising use of secure channel protocols (e.g., TLS) and circumvention tools. This trend

is also visible for South Korea but not for the other top five countries.

Iran blocks 20–30% of the URLs from ATL, more than any other country. This

is due to extensive blocking of URLs in the NEWS and BLOG categories. Saudi

Arabia consistently blocks roughly 10% of ATL and CLBL-G URLs, mostly from the

PORN and GAMB categories with some NEWS as well. South Korea applies a similar

level of blocking for the PORN and GAMB categories; it is a much more democratic

nation than Saudia Arabia, but it nonetheless has applied draconian restrictions to

“indecent Internet sites” (including both pornography and gambling sites) since before

2008 [189].

Censorship in Kenya is stable at a rate of roughly 0.4% except for March 2017,

where the rate spikes to 10%. This is an artifact; for that one month, our VOD

in Kenya was connected to a network that applied much more aggressive “filtering”

to porn, gambling, and proxy sites than is typical for Kenya, using a commercial

product.
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At the beginning of 2018, we observe a drop in the level of filtering in India, from

2% to 0.8%, followed by a slow rise back to about 1.5% after about four months.

This coincides with political events: India’s telecommunications regulator announced

support for “net neutrality” at the end of 2017 [218, 259], and most ISPs suspended

their filtering in response. However, when a detailed regulation on net neutrality was

published in mid-2018 [234], it became clear that the government had not intended to

relax its policy regarding content deemed to be illegal, and the filtering was partially

reinstated.

Similarly, we see a rise in the level of filtering in Turkey in June 2017, from an

earlier level of 3% to 5%. Although it is not visible on this chart, the topics censored

also change at this time. Prior to the rise, most of the blocked sites in Turkey

carried pornography and other sexual content; after the rise, many more news sites

were blocked. This, too, coincides with political events. Following a controversial

referendum which increased the power of the Turkish Presidency, the government has

attempted to suppress both internal political opposition and news published from

other countries. International news organizations took notice of the increased level of

Turkish online censorship in May of 2017 [106, 228], while ICLab detected it around

the end of April.

2.3.5.4 Heuristic False Positive

We manually reviewed the results of all of our heuristic detectors for errors. Man-

ual review cannot detect false negatives, because we have no way of knowing that we

should have detected a site as censored, but false positives are usually obvious. Here

we discuss the most significant cases we found, and how we adjusted the heuristics

to compensate.

DNS Manipulation. We manually verified the detection results identified by

each heuristic. The only heuristic producing false positives was the rule for when a
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vantage point and control nodes receive addresses in different ASes. As we mentioned

in Section 2.3.4.1, this heuristic gives a false positive rate on the order of 10−4 with

the value of \ we selected.

Packet injection. As with DNS manipulation, we manually reviewed the results

of each heuristic for false positives. We found many false positives for RST or ICMP

unreachable instead of SYN-ACK, leading us to reclassify these as only “probable”

censorship and not include them in the synthetic analysis above. We also found cases

in all of the categories where a packet anomaly was only observed once, for a URL

that seemed unlikely to be censored from that vantage (e.g., connection disrupted to

an airline website from a VPN vantage in the USA). We therefore discount all cases

where a packet anomaly has only been observed once for that URL in that country.

Block pages. Our set of regular expressions did initially produce some false posi-

tives, for instance on news reportage of censorship, quoting the text of a block page.

We manually reviewed all of the matches and adjusted the regular expressions until

no false positives remained. It was always possible to do this without losing any true

positives.

2.3.6 Other Cases of Network Interference

In this section, we describe three cases of network interference discovered with

ICLab, that are different from the form of censorship we set out to detect: Geoblocking

by content providers (§2.3.6.1), injection of a script to fingerprint clients (§2.3.6.2),

and injected malware (§2.3.6.3).

2.3.6.1 Geoblocking and HTTP 451

HTTP status code 451, “Unavailable for Legal Reasons,” was defined in 2016 for

web servers to use when they cannot provide content due to a legal obstacle (e.g., the

Google restricts access to clients from Iran to enforce US sanctions [175]) or requests

from foreign governments [45].
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We observe 23 unique websites that return status 451, from vantages in 21 coun-

tries. Six of these cases appear to be wordpress.com complying with requests from

Turkey and Russia (for blogs related to political and religious advocacy). Along with

the HTTP 451 status, they also serve a block page, explaining that wordpress.com is

complying with local laws and court orders. Two more websites (both pornographic)

were observed to return status 451 from Russia, with HTTP server headers indicating

the error originates from the Cloudflare CDN, but without any explanation. Since

the adoption of the GDPR [112] we have observed a few sites returning status 451

when visited from European countries.

Since status 451 is relatively new, the older, more generic status 403 (“Forbidden”)

is also used to indicate geoblocking for legal reasons. Applying the tag frequency

clustering technique described in Section 2.3.4.3 to the accompanying HTML, we

were able to discover six more URLs, in four countries, where status 403 is used with

a block page stating that access is prohibited from the client’s location. Three of

these were gambling sites, with the text of the block page stating that the sites are

complying with local regulations.

We also observe a related phenomenon at the DNS level. From a single VPN

server located in the USA, we observed netflix.com resolving to an IANA-reserved

IP address, 198.18.0.3. This could be Netflix refusing to provide their service to

users behind a VPN.

2.3.6.2 User Tracking Injection

Our detector for block pages (§2.3.4.3) flagged a cluster of TCP payloads observed

only in South Korea. Upon manual inspection, these pages contained a script that

would fingerprint the client and then load the originally intended page. We observed

injections of this script over a five-month period from Oct. 2016 through Feb. 2017,

from vantage points within three major Korean ISPs, into 5–30% of all our test page
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loads, with no correlation with the content of the affected page. By contrast, censor-

ship in South Korea affects less than 1% of our tests and is focused on pornography,

illegal file sharing, and North Korean propaganda.

These scripts could be injected by the VPN service, the ISPs, or one or more of

their transit providers. The phenomenon resembles techniques used by ad networks

for recording profiles of individual web users [21]. This demonstrates the importance

of manual checking for false positives in censorship detection. All of the detection

heuristics described in Sections 2.3.4.2 and 2.3.4.3 triggered on these scripts, but they

are not censorship.

2.3.6.3 Cryptocurrency Mining Injection

Our block page detector also flagged a set of suspicious responses observed only

in Brazil. The originally intended page would load, but it would contain malware

causing the web browser to mine cryptocurrency. (As of mid-2018, this is a popular

way to earn money with malware [157].) We were able to identify the malware as

originating with a botnet infecting MikroTik routers (exploiting CVE-2018-14847),

initially seen only in Brazil [149] but now reported to affect more than 200,000 routers

worldwide [94]. Infected routers inject the mining malware into HTTP responses

passing through them.

The malware appears in ICLab’s records as early as July 21st, 2018—ten days

before the earliest public report on the MikroTik botnet that we know of. If ICLab’s

continuous monitoring were coupled with continuous analysis and alerting (which is

planned) it could also have detected this botnet prior to the public report. This

highlights the importance of continuously monitoring network interference in general.

2.3.7 Comparison with other Platforms

Other censorship measurement platforms active, at the time of writing, include

Encore [50], Satellite-Iris [196, 222], Quack [240], and OONI [103]. Table 2.6 shows
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Table 2.6. High-level comparison of ICLab with five other censorship monitoring
platforms.

Platform Packet Vantage Point Types Detection Capabilities Coverage (avg/max)
Capture VPNs ORsa VODs DNS TCP Blockpage Countries ASes URLs

Encore [50] X Unknownb Unknown 23
Satellite-Iris [196, 222] X X 174 / 179 3,261 / 3,617 2,094 / 2,423
Quack [240] X 75 / 76 3,528 / 4,135 2,157 / 2,484
OONI [103] ○c X X X 113 / 156 670 / 2,015 13,582 / 20,258
ICLab X X X X X X 42 / 50 48 / 62 16.964 / 23,992

aOpen Relays: Internet hosts that will relay a censorship probe from researchers’ computers without
any prior arrangement.

bDue to privacy concerns, Encore does not record this information.

cThe OONI client can optionally collect packet traces. However, OONI’s servers do not record traces,
due to privacy concerns.

the high-level features provided by each of these platforms, and a comparison of their

country, AS, and URL coverage for the two-month period of August and September

2018. (August 1, 2018 is the earliest date for which data from Quack and Satellite-Iris

has been published.) All platforms suffer some variation from day to day in coverage,

so we report both a weekly average and the maximum number of covered countries,

ASes, and URLs. While many of the platforms described in Table 2.6 have chosen

to emphasize breadth of country and AS coverage at the expense of detail. ICLab

takes the opposite approach, collecting detailed information from a smaller number

of vantage points.

2.3.7.1 Quack

Quack relies on public echo servers to measure censorship. It requires at least 15

echo servers within the same country for robust measurements [240]. Currently, these

are available to Quack from 75 countries. 95 more countries have at least one echo

server, which can still provide some measurements.

Quack aims to detect censorship of websites, but it does not send or receive well-

formed HTTP messages. Instead it sends packets that mimic HTTP requests, which

the echo server will reflect back to the client. It expects the censor to react to this
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reflection in the same way that it would to a real HTTP message. The designers of

Quack acknowledge the possibility of false negatives when the censor only looks for

HTTP traffic on the usual ports (80 and 443). More seriously, manual inspection of

the Quack data set reveals that in 32.6% of the tests marked as blocked, the client did

not successfully transmit a mimic request in the first place. We have reported this

apparent bug to the Quack team.

2.3.7.2 Satellite-Iris

Satellite-Iris [56] combines Satellite [222] and Iris [196]. It focuses on DNS manip-

ulation, measuring from open DNS resolvers. It compares the responses received from

these vantage points with responses observed from a control node. It also retrieves

corresponding TLS certificates from the Censys [90] data set and checks whether they

are valid. It applies several heuristics to each response, all of which must be satisfied

for the response to be judged as censorship. We now highlight two cases where their

heuristics lead to false negatives.

If Satellite-Iris can retrieve a TLS certificate from any of the IP addresses in the

open resolver’s response, and that certificate is valid for any domain name, it considers

the response not to be censored. This means Satellite-Iris will not detect any case

where the censor supplies the address of a server for a different domain in forged

DNS responses. In Satellite-Iris’s published data set, 0.01% of the measurements are

affected by this. Specifically, measurements from China and Turkey show domains

belonging to the BBC, Google, Tor and others resolving to an IP address belonging

to Facebook’s server pool.

Despite the design bias toward false negatives, we also find that 83.8% of the

DNS responses considered censored by Satellite-Iris may be false positives. Satellite-

Iris depends on the Censys data set to distinguish DNS poisoning from normal IP

variation (e.g., due to geotargeting and load balancing by CDNs). When Censys
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Figure 2.10. Distribution of OONI observations by country in August and Septem-
ber of 2018, grouped by Freedom House classification.

information is unavailable, it falls back on a comparison to a single control resolver,

which is inadequate to rule out normal variation, as discussed in §2.3.4.1.

2.3.7.3 OONI

OONI [103] relies on volunteers who run a testing application manually. The

application is available on all major desktop and mobile operating systems except

Windows. In August and September of 2018, OONI’s volunteers conducted 14,000,000

measurements from 156 countries, and reported 29,982 unique URL-country pairs as

blocked.

OONI’s reliance on volunteers, and on manual operation of the testing application,

means that its coverage is not evenly distributed over websites or countries. Their

“primary web connectivity” test suite also tests ATL and CLBL-G, but the mobile

phone version of the application only tests a short subsample on each run, in order to

limit the time and bandwidth consumed by the test. 62% of the measurements for the
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August and September 2018 period tested fewer than 80 URLs. Figure 2.10 shows the

distribution of countries covered by OONI. 86% of all observations originate from the

23 countries named in this figure, and 48% are from just two countries—Russia and the

USA. For another 4% of the observations, no location could be identified. Comparing

Figure 2.10 to Figure 2.3 shows that OONI does not achieve better coverage of “partly

free” and “not free” countries than ICLab does. Volunteers whose Internet access

is unreliable or misconfigured may submit inaccurate results. Indeed, more than

100,000 of the observations are tagged inconclusive due to local network errors (e.g.,

disconnection during the test).

Because OONI’s testing application runs without any special privileges, it nor-

mally cannot record packet traces. OONI’s detection heuristics are rudimentary,

leading to a high level of false positives. OONI’s DNS consistency test will flag any

disagreement between the client’s local recursive resolver and a public DNS utility as

censorship [188]. OONI’s block page detector relies on the “30% shorter than uncen-

sored page” heuristic proposed by Jones et al. [144], but innocuous server errors are

also short compared to normal page.

Yadav et al. [259] reported very high levels of inaccuracy in OONI’s results for

India, with an 80% false positive rate and a 11.6% false negative rate. We confirm a

high false positive rate for OONI’s block page detector: of the 12,506 unique anoma-

lous HTTP responses reported by OONI’s volunteers in August and September 2018,

our block-page detector only classifies 3,201 of them as censorship, for a 74.4% false

positive rate. The most common cause of false positives is a response with an empty

HTML body, which can occur for a wide variety of innocuous reasons as well as

censorship [23, 175, 236].

2.3.8 Limitations

In this section, we discuss ICLab’s limitations and how we have addressed them.

50



Discrimination against VPN users. Some websites may block access from VPN

users [175, 222]. We sometimes observe this discrimination against our VPN clients

(see §2.3.6.1 for an example), and are careful not to confuse it for censorship.

Malicious VPN Providers. Some VPN providers engage in surveillance and traf-

fic manipulation, for instance to monetize their service by injecting advertisements

into users’ traffic [151]. We avoid using VPN providers that are known to do this. Our

block page detectors are designed not to confuse dynamic content (e.g., advertise-

ments, localization) with censorship, as described in §2.3.4.3. In §2.3.6.2 and 2.3.6.3

we describe surveillance and malware injections that required manual inspection to

distinguish from censorship.

VPN providers are also known to falsely advertise the location of their VPN

servers [251]. We verify all server locations using the technique described in §2.3.3.2.

Bias in Test Lists. ATL suffers from sampling bias and churn [221]. CLBL-G and

CLBL-C may suffer from selection bias, since they are manually curated by activists.

We have plans to revise the test lists and add more URLs as needed.

CLBL-G and CLBL-C are updated slowly. It is not unusual for more than half

of the sites on a country-specific list to no longer exist [250]. This is not as much of

a limitation as it might seem, because censors also update their lists slowly. Several

previous studies found that long-gone websites may still be blocked [20, 180, 259].

Coverage of “Not Free” Countries. As discussed in Section §2.3.3.2, the risks

involved with setting up many vantage points in certain sensitive (“not free”) countries

prevent us from claiming we can obtain complete coverage at all times. However, the

set of countries ICLab covers gives us a good, if imperfect, longitudinal overview of

worldwide censorship.

Evading Censorship Detection. Censors are known to try to conceal some of

their actions (“covert” censorship). ICLab can detect some covert censorship, as

discussed in §2.3.4, but not all of it. The “uncertain” and “probably censored” cases
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of TCP packet injection (Figure 2.5 in §2.3.4.2) are priorities for further investigation.

Censors could further conceal their actions by disabling filtering for IP addresses that

appear to be testing for censorship. Comparing results for vantage points in the same

country gives us no reason to believe any country does this today.

2.3.9 Conclusion

We presented ICLab, a global censorship measurement platform that is able to

measure a wide range of network interference and Internet censorship techniques.

By using VPN-based vantage points, ICLab provides flexibility and control over

measurements, while reducing risks in measuring Internet censorship at a global scale.

Between January 2017 and September 2018, ICLab has conducted 53,906,532 mea-

surements over 45,565 URLs in 62 countries.

ICLab is able to detect a variety of censorship mechanisms as well as other forms

of network interference. Other longitudinal measurement platforms may have more

vantage points and accumulated data than ICLab, but also more errors, and/or they

only focus on a specific type of censorship. Our platform can more reliably distin-

guish normal network errors from covert censorship, and our clustering techniques

discovered 48 previously unknown block pages.

As we continue to operate ICLab and interact with relevant political science and

civil society organizations, ICLab will not only make new technical observations, but

also place qualitative work in this area on a firm empirical footing.

2.4 Demystifying Great Firewall’s DNS Censorship Behavior

The Great Firewall of China (GFW) has long used DNS packet injection to censor

Internet access. In this chapter, we analyze the DNS injection behavior of the GFW

over a period of nine months using the Alexa top 1M domains as a test list. We

first focus on understanding the publicly routable IPs used by the GFW and observe
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groups of IPs used to filter specific sets of domains. We also see a sharp decline in

public IPs injected by the GFW in November 2019. We then fingerprint three different

injectors that we observe in our measurements. Notably, one of these injectors mirrors

the IP TTL value from probe packets in its injected packets which has implications

for the use of TTL-limited probes for localizing censors. Finally, we confirm that our

observations generally hold across IP prefixes registered in China.

2.4.1 Introduction

Many countries are known to use injection of DNS responses to implement cen-

sorship [37, 60, 116, 182, 242] with China’s use of DNS injection in the Great Firewall

(GFW) being a popular topic for study[32, 33, 87, 100, 115, 129, 132, 168, 196,

229, 260]. While other countries tend to use NXDOMAIN or reserved IP address

space [37, 43, 60, 179], China’s use of a range of public IP addresses owned by a

variety of organizations is notable. This use of public IP addresses can complicate

detection of DNS-based censorship in China [57, 103, 182] and can make evading

inadvertent DNS cache poisoning by the GFW challenging [87, 229].

While there have been numerous studies of China’s DNS censorship [32, 33, 87,

100, 115, 129, 132, 168, 196, 229] (owing in part to the fact that the GFW will

inject replies to clients outside of the country), in this study, we take a longitudinal

approach focusing on China’s use of public IPs for filtering. We measure China’s

DNS injector for a period of nine months which allows us to observe changes in the

set of public IP addresses used by the GFW (§2.4.2). We further perform targeted

measurements to fingerprint the behavior of the GFW’s DNS packet injector and

consider the generalizability of our results across 36K prefixes announced by Chinese

ASes (§2.4.8).

Our study reveals several previously-unknown properties of China’s filtering sys-

tem:
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IP groups. First, we observe groups of IP addresses that are used in injected replies

to specific sets of domains (§2.4.6). These groups may point to groups of domains

that are being blocked by a common infrastructure or blocking process. We discuss

these groups in the context of blocked domains and IPs used for blocking over time

(§2.4.6.2)

Three distinct injectors. We also observe that a single DNS query can result

in multiple injected DNS replies from the GFW. Using IP ID, IP TTL, DNS TTL

and DNS flags, we were able to fingerprint these multiple replies and identify three

distinct packet injectors acting on DNS requests (§2.4.7.1).

TTL-echoing in injected packets. In the process of fingerprinting the censors,

we observe one of the packet injectors will actually echo the TTL of the probe packet

which has implications on the popular technique of using TTL-limited probe packets

to localize network censors (§2.4.7.3).

2.4.2 Methodology

We now describe our methodology for monitoring DNS-based censorship in China

on a longitudinal basis (§2.4.3) and how we extend this method to understand regional

differences in filtering (§2.4.4). We also discuss steps taken to address ethical concerns

while conducting our experiment (§2.4.5).

2.4.3 Baseline Longitudinal Experiment

We use the commonly employed tactic of issuing DNS queries for potentially

sensitive domains from a host outside of China towards IP addresses located in China

(specifically, those not hosting DNS servers). This allows us to trigger the GFW

as our packet crosses the GFW, and the targeting of IP addresses not hosting DNS

servers means that any response to our query can be inferred to be injected by the

GFW. We issue queries from a Virtual Private Server (VPS) running Ubuntu 18.04

LTS located in a US academic network. We then send DNS queries towards a VPS
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under our control located in China with the same configuration as our US host. We

perform our queries using the standard DNS port (53). We performed an initial test

over ports 1-65535 and only observed censorship on DNS queries sent on port 53.

With this source and destination host, we then issue DNS queries for a set of

tested domains. In our case, a set of 1 million domains is extracted from the Alexa

top million Web sites list (accessed on Feb. 22, 2019). For any domains without

the prefix “www.” we add this prefix as the GFW does not consistently inject DNS

replies in the absence of this prefix [32, 62]. We query these domains every two hours

between September 2019 and May 2020. In total, we sent 2.8 billion DNS queries and

observed 119.6 million forged responses from the GFW.

2.4.4 Multi-path Experiment

A limitation of our baseline methodology, is that we will only observe filtering

on the path between our VPS in the US and our VPS in China. To complement

this methodology, we perform an additional experiment where we direct DNS queries

towards a broad range of Chinese IP prefixes. We identify Chinese IP prefixes by

using CAIDA’s AS-to-organization dataset [58] to identify ASNs registered in China.

We then use CAIDA’s prefix-to-AS mapping tool [59] to collect IP prefixes announced

by these ASes, for a total of 36,629 prefixes.

Within each prefix, we select one IP address at random, ensuring that there is not

a host at this IP address that will respond to DNS queries. To determine this, we send

10 queries for a non-sensitive domain www.baidu.com to the candidate IP address.

If there is no reply to any of our DNS queries, we infer that this IP is not hosting a

DNS server and proceed with our tests. We exclude an IP prefix from testing if we

fail to find a non-responding IP address after 50 attempts. In total, we select 36,146

IP prefix, belonging to 417 Chinese ASes.
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Table 2.7. FortiGuard Categories. The 10 most common categories for the domains
on Alexa 1M test list, and the percentage of censored domains in each category.

Category Alexa% Category Censored%

Business 27.7 Proxy Avoidance 46.0
Information Technology 13.3 Personal Websites 43.0
Shopping 5.9 Explicit Violence 20.5
Education 5.7 Extremist Groups 10.0
Personal Websites 4.4 Other Adult Material 9.4
News and Media 4.1 Content Servers 9.3
Entertainment 3.5 Dynamic DNS 7.3
Pornography 2.8 Pornography 6.2
Health and Wellness 2.7 Distcrimination 5.3
Government and Legal Orgs 2.6 Instant Messaging 4.2

For this test, we focus on a single domain www.google.sm that we observe triggers

censorship by the three packet injectors observed in our baseline experiment (§2.4.7)

since our goal is to understand the behavior of multiple network paths. We attempt

100 queries for this domain towards each of the Chinese prefixes we identify.

2.4.5 Ethics

For our baseline experiment, the two hosts that we sent DNS queries to and from

are machines under our control. For our multi-path experiment, we first verify that

no DNS service was running on the selected IP address. We also note that our

experiments are initiated from a host outside of China, thus to the GFW it appears

that queries are coming from an external (academic) network, as opposed to any host

within China. Finally, our multi-path experiment limits the amount of traffic sent to

each IP address to 1 MB.

2.4.6 Characterizing DNS Injection

In this section, we characterize domains filtered over time (§2.4.6.1) as well as the

IP addresses in the injected replies (§2.4.6.2).

2.4.6.1 Censored Domains

We see that there exists an increasing trend in the number of domains being cen-

sored by the GFW. The number of censored domains increases from 23,995 to 24,636
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Figure 2.11. Censored domain name changes among Alexa top 1 million from
September 2019 to May 2020.

(2.8% increase) over our nine-month measurement study. Figure 2.11(a) presents the

number of unique domains censored over time. Interestingly, previous work [32] has

also shown a 10% increase in the number of censored domains over time in their 2014

study (also using the Alexa top million as their test domains).

Figure 2.11(b) depicts the daily number of domains from the Alexa top 1 mil-

lion that get added and removed from the set of domains that we observe being

blocked. We manually analyzed the dates in which more than 20 domains were re-

moved from blocked set, on November 18 a group of 50 domains that all have the

keyword youtube.com were removed and on November 22 a group of 22 domains

with the keyword line.me were removed from the blocked set. This suggests that

the GFW still operates on keywords to censor domains as opposed to curating a fixed

set of domains.

Category of censored domains. We leveraged the “FortiGuard” URL classifi-

cation service, operated by FortiNet [6] to categorize the Alexa top domains. The

top categories within the Alexa list are listed in the left column of Table 2.7. We

further analyze the percentage of censored domains in each category of the Alexa top

million list. The top 10 categories with the highest percentage of domains censored
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Figure 2.12. Top ASNs and the number of injected IP addresses used by the GFW
belonging to each of them.

are shown in the right column of Table 2.7. We can see that 46% of the domains in

the “Proxy Avoidance” category are censored by the GFW. The high number (42.9%

of domains censored) for the “Personal Websites” category is because 42.7% of the

censored domains within the “Personal Websites” category are domains containing

the keywords .blogspot.com, or .tumblr.com which appear to be filtered by the

GFW. We further analyzed and found that this is in fact a keyword based block list,

i.e any domain that ends in .blogspot.com or .tumblr.com will be censored by the

GFW.

2.4.6.2 Injected IPs

Longitudinal trends. We observe a set of 1,510 distinct IP addresses returned

in type A DNS records injected by the GFW. While the majority of responses we

observe are type A DNS records, we observe injected CNAME records for a single

domain (www.sunporno.com). We focus on the type A records in this paper and plan

to dig into the use of CNAME records by the GFW in future work.
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Figure 2.12 shows the top ASes associated with the IPs injected by the GFW.

We observe a total of 41 ASes associated with the injected IP addresses. Most of

these ASes correspond to organizations in the US, particularly Facebook, WZCOM,

Dropbox and Twitter. We note a striking decrease in the number of distinct IPs

injected by the GFW on November 23, 2019 from 1,510 IPs (associated with 41

ASes) to only 216 IPs (associated with 21 ASes). We investigate this drop in injected

IPs further in Section 2.4.7.

Groups of injected IPs. One property of the injected IPs that we note, is that

certain subsets of blocked domains resolve to a fixed set of public IPs. That is, a

group of public IPs is used to filter a given group of censored domains. Table 2.11

depicts the six distinct groups of domains we identified. We further categorized the

domains in each group. The top category of domains in group 1, 2, and 3 belong

to the “Proxy Avoidance” category, while 97% of the domains from group 4 and

5, include the word google, belonging to the “Search Engines” category. Group 6

consists of the remaining websites that are censored on the Alexa 1M that are mostly

blogspot and tumblr related websites. We analyzed the IPs that were dropped from

the IP pool on November 23 and found that 99% of the domains that received those

IPs currently receive 197 injected IPs (Group 6), the majority (99%) of these domains

have the keyword tumblr.com in them.

Reachability of the injected IP addresses. Given that China is using publicly

routable IP addresses, a natural question is whether these IPs are hosting content

or are otherwise reachable on the broader Internet. We test the reachability of the

injected IPs from our VPS in China and the United States by initiating TCP hand-

shakes on port 80 and port 443. We perform this experiment daily for 7 days and

present the averaged result in Figure 2.13. We note that each days results looked

similar. In the majority of cases (60.9%), the TCP handshake attempt results in a

TIMEOUT both for source hosts in the US and China, indicating there is likely no
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Table 2.8. Overview of the relationship between the sensitive domain, forged IP
groups and injectors after the decrease in the number of injected IP addresses.

Group Domains IPs Top categories%

1 8 3 Proxy Avoidance 50.0%
Business 25.0%
Personal Websites 12.5%

2 53 4 Proxy Avoidance 36.0%
News and Media 9.4%
Instant Messaging 7.5%

3 48 10 Proxy Avoidance 79.2%
Information Technology 10.4%
Info and Computer Security 2.1%

4 33 4 Search Engines 96.9%
Dynamic DNS 3.1%

5 54 201 Search Engines 96.3%
Business 1.8%
Unknown 1.8%

6 ˜24K 197 Personal Websites 76.7%
Pornography 6.3%
Information Technology 2.8%

content being served from these IPs at the time of our measurements. It is possible

these IPs were observed serving content at some point in the past which resulted in

their addition to the set of injected IPs.

2.4.7 Understanding the GFW Injectors

We now characterize cases where multiple injected DNS replies are observed.

We are able to fingerprint these replies and identify three distinct injection pro-

cesses (§2.4.7.1). We characterize longitudinal trends of the injectors (§2.4.7.2). Fi-

nally, We also localize these injectors and observe peculiar mirroring of the probe-TTL

value by one injector (§2.4.7.3).

2.4.7.1 Fingerprinting the Injectors

In our measurements, we observed cases where a single DNS query may result

in multiple injected DNS replies. Upon closer inspection, we were able to identify

three distinct fingerprints within these multiple injected replies based on IP Do-not-

Fragment (DF), IP TTL , DNS Authoritative Answer (AA), and DNS TTL fields.
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Figure 2.13. Reachability of the ports 80 and 443 of the injected IPs from China
and from the US. The numbers are averaged over seven days.
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Figure 2.14. IPID and TTL values observed for the three DNS Injector behaviors
observed in our measurements. Injector 1 is similar to what has previously been
observed in [32]. We observe that the third injector reflects the IP TTL value, leading
to a fixed value when the initial IP TTL values of our queries are not varied.

Table 2.9 summarizes the fingerprints of the three injectors and Figure 2.14 plots

the IPID and TTL values for these three injectors when queries are sent in rapid

succession6. We also find that the three injectors also behave slightly differently in

how they format their DNS responses. Specifically, Injector 1 uses the domain from

the query as-is in the DNS response, whereas Injectors 2 and 3 use a “compression

pointer” [177] to reduce repetition of the query domain in the response, perhaps a

sign of these injectors using a different code base in their operation.

6In this test, we injected packets as fast as we could using a multi-threaded Python program
while using tcpdump to capture the response packets.
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Table 2.9. Summary of the three DNS injectors. “DNS AA” refers to the DNS
Authoritative Answer flag. “IP DF” refers to the IP “do not fragment” flag.

Injector Description IPs Domains IP
Group

1 DNS: TTL=60; AA=1 4 88 4, 5, 6
IP: DF=0
incrementing IP TTL

2 DNS: AA=0 1,506 24,729 1, 2, 3
IP: DF=1 5, 6
randomized IP TTL

3 DNS: AA=0 958 22,948 1, 2, 3, 5
IP: DF=0; ID=0
fixed IP TTL

33 1781
0

0

0 22893

55
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Injector 3

Figure 2.15. Venn diagram showing the number of domains receiving different
combinations of injected responses by the three observed DNS injectors.

Similar to prior work [32], we observe Injector 1 with an incrementing IP TTL

value between subsequent packets. However, we see this injector is considerably less

active in terms of the number of domains it filters. Figure 2.15 shows the number of

domains that observed an injected reply from each injector. We can see that Injector

1, which most closely resembles the injector seen in 2014 [32], only filtering a total of

88 domains.

Interestingly, we do not observe any domains that only trigger Injector 3, with

it acting on a subset of Injector 2’s domains. When we consider the relationship
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Figure 2.16. CDF of the popularity ranking of censored domains by each injector.

between the Injectors and the IP/domain groups (Table 2.9), we see that Injector 1

is the only injector filtering IPs in the fourth IP/Domain group with 33 domains that

are mostly in the “Search Engines” category (cf. Table 2.11).

While Figure 2.15 gives a sense of the number of domains filtered by each injector,

it doesn’t necessarily reflect how often the injector would be triggered. For this, we

consider the popularity of domains that each injector acts on. Figure 2.16 shows

the cumulative percentage of domains filtered by each injector relative to their Alexa

ranking. Here we see that domains filtered by Injector 1 tend to be more popular

than those filtered by the other injectors. Most of the domains (97%) censored by

Injector 1 are domains that contain the keyword google, and 90% of them are in the

top 350K domains in the Alexa top 1M list. While, the majority (80%) of domains

censored by Injectors 2 and 3 are *.blogspot and .*tumblr domains which are in

the long tail of the Alexa 1M list [221].

2.4.7.2 Longitudinal trends

Halting interval of injectors. Figure 2.17 shows the total number of injected

packets on a daily basis. Due to the frequency of our measurements, we are not able

to discover any gaps less than two hours. When analyzing the data on a bi-hourly
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Figure 2.17. Total number of injected packets per injector received each day across
time. The gaps are all due to disruptions of the measurements.

basis, we discover that while Injector 2 has been working consecutively, Injector 1 and

Injector 3 occasionally stopped working for a few hours. Specifically, the three halting

intervals of Injector 1 are between 13:00 and 15:22 on September 18, 2019; between

9:26 and 13:00 September 19, 2019; and between 17:06 to 10:22 on September 19,

2019. The only halting intervals of Injector 3 are between 2:36 and 8:00 on May 1

(in Beijing Time). We note the actual halts are likely to be a sub-interval of what

we have discovered. All of these occasionally happened halts lasted less than 6 hours

and most of them happened during work hours in China.

Relationship between injectors and the IP drop seen in Figure 2.12. We

analyzed the IPs used by the injectors over time, specifically before and after the

decrease in the number of distinct IPs injected on November, 2019. The decrease has

no effect on Injector 1 as it always uses the same four distinct IPs. However, Injector

2 and Injector 3 initially use a pool of 958 and 1,506 IPs to send injected DNS replies,

respectively. After the drop, both Injector 2 and 3 use the same IP pool (with 212

IPs) for their injected DNS replies.
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2.4.7.3 Localizing the Injectors

We next attempt to localize the three injectors identified in §2.4.7.1. We use the

commonly employed method of sending packets with incrementing IP TTL values

until we receive an injected DNS reply to identify where on our path the packet

injector lies [32, 168, 201, 229, 257]. For this test, we focus on a single domain that

we observed to trigger all three injectors: www.google.sm. We then send DNS queries

for this domain from our VPS in the US to the VPS in China.

Based on these TTL limited probes, we were able to observe that Injectors 1 and

2 are located 15 hops away from our US VPS. For comparison, our Chinese VPS is 25

hops from our US VPS. However, we observed an unusual behavior with Injector 3,

where we did not see an injected DNS reply from Injector 3 until the initial TTL on

our probe packet is set to 29. Given that the destination IP of our probe packet was

only 25 hops away, this behavior seemed unusual. However, upon closer inspection,

we determined that this behavior stemmed from Injector 3 echoing the incremented

TTL of the probe packet in its injected reply.

Figure 2.18 illustrates this phenomenon. We find that when the probe packet has

a TTL of 29, the injected reply has an IP TTL of 1 when it reaches our US host.

Similarly, when the probe packet has a TTL of 30 the TTL of the injected reply is 2,

and so on. The precise probe TTL needed to observe this behavior is 2= − 1 where

n is the number of hops between the probing host and the packet injector. We note,

that this discussion implicitly assumes symmetric paths between the injector and the

probing host. This behavior could potentially be used to identify asymmetric routing

on paths (when a domain that will trigger multiple injectors is used), but we leave

more in depth analysis of this to future work.

We also compare the time between sending our DNS query and when we receive

the injected reply to get a sense of where the injectors are located. Specifically, we

compare the delays of the three injectors and find that more than 90% of the time
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Figure 2.18. Illustration of how Injector 3 mirroring the IP TTL of the DNS query
impacts the results of TTL-limited probing. Figure 2.18(a) shows that when the IP
TTL of the DNS query is 29 the corresponding injected packet has a high enough
TTL to reach the sender. Figure 2.18(b) shows that when the IP TTL of the DNS
query is below 29, the initial IP TTL of the forged response is too small to reach the
sender.

the delays are within 0.2 ms of each other. This would support the theory that these

three devices are installed in the same physical location.

We repeat these experiments from seven hosts outside of China (our VPS in the

US and cloud-hosted VMs in the Netherlands, Singapore, UK, France, Canada and

India) with consistent results.

2.4.8 Multi-path Results

In Section 2.4.2, we describe our method to send our DNS queries to 36K Chinese

prefixes. Our goal here is to confirm that our results are robust, to the location of

the host that we focus on for our longitudinal experiment. Figure 2.19 shows the

result: each bar corresponds to the combination of injectors that were observed and

the height of the bar corresponds to the percent of prefixes where this combination

of injectors was observed.
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Of the 36K prefixes we direct our query towards, we find that 62% of them observe

all three DNS injectors. We observe 12% of cases where two of the three injectors

are observed, and 13% of cases where only one of the three injectors are observed.

For each IP address, we send 100 queries which suggests that these cases are not just

caused by transient packet loss. We also observe some injectors that are not seen in

our longitudinal data in this broader study (denoted by Injector X in Figure 2.19).

In total, there are around 4% of the prefixes where we observe injectors not matching

our fingerprints.

Interestingly, we see 8% of the prefixes, registered to 134 ASes, where no DNS

injector is triggered. Using the RIPE NCC AS visibility tool [216], we find 22% of

these prefixes have less than 15% visibility, suggesting our queries may never reach

these prefixes. For the remaining prefixes, we use the RIR-based IP-to-ASN mapping

provided by Team Cymru [233] and find that half of these prefixes are registered out-

side of China (e.g., a Chinese-based company registering an IP address with ARIN).

In these cases, the prefixes may be located outside of China and not subject to cen-

sorship. It is worth noting that there are still 1,027 IP prefixes that seem to be within

China’s territory, but with no injected packet observed. These IP prefixes correspond

to 120 ASes. Upon closer inspection we find that these ASes tend to be related to

technology companies or government agencies.

2.4.9 Conclusion

In this work, we analyze the DNS poisoning behavior of the GFW across nine

months. We observe groups of IPs used to censor specific groups of domains and

identify three distinct DNS packet injectors. We localize and characterize the behavior

of these injectors and identify one injector mirroring the TTL of the probe packets

which has implications for studies that use TTL-limited packets to localize DNS

censors. We have released our code and dataset to maintain reproducibility and to
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Figure 2.19. Number of unique IP prefixes responding with different types of re-
sponses. InjectorX refers to the injectors that have fingerprints other than the sum-
marized ones.

stimulate future work, obtainable at https://gfw.report/publications/foci20_

dns/en/.

2.5 How Great is the Great Firewall? Measuring China’s

DNS Censorship

The DNS filtering apparatus of China’s Great Firewall (GFW) has evolved con-

siderably over the past two decades. However, most prior studies of China’s DNS

filtering were performed over short time periods, leading to unnoticed changes in

the GFW’s behavior. In this study, we introduce GFWatch, a large-scale, longitudi-

nal measurement platform capable of testing hundreds of millions of domains daily,

enabling continuous monitoring of the GFW’s DNS filtering behavior.

We present the results of running GFWatch over a nine-month period, during

which we tested an average of 411M domains per day and detected a total of 311K

domains censored by GFW’s DNS filter. To the best of our knowledge, this is the

largest number of domains tested and censored domains discovered in the literature.

We further reverse engineer regular expressions used by the GFW and find 41K in-

nocuous domains that match these filters, resulting in overblocking of their content.
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We also observe bogus IPv6 and globally routable IPv4 addresses injected by the

GFW, including addresses owned by US companies, such as Facebook, Dropbox, and

Twitter.

Using data from GFWatch, we studied the impact of GFW blocking on the global

DNS system. We found 77K censored domains with DNS resource records polluted

in popular public DNS resolvers, such as Google and Cloudflare. Finally, we propose

strategies to detect poisoned responses that can (1) sanitize poisoned DNS records

from the cache of public DNS resolvers, and (2) assist in the development of circum-

vention tools to bypass the GFW’s DNS censorship.

2.6 Introduction

Among the censorship regimes on the Internet, China is one of the most notorious,

having developed an advanced filtering system, known as the Great Firewall (GFW),

to control the flow of online information. The GFW’s worldwide reputation [107]

and ability to be measured from outside the country, has drawn the attention of

researchers from various disciplines, ranging from political science [38, 64, 80, 82] to

information and computer science [32, 88, 96, 173, 183, 253].

Unlike many other DNS censorship approaches, the GFW is known to return glob-

ally routable IP addresses in its injected responses. Recent studies [129, 133, 183]

have observed injected IP addresses belonging to popular US companies, including

Facebook, Dropbox, and Twitter. The use of routable IPs is in contrast to coun-

tries such as Bahrain, Korea, Kuwait, Iran, Oman, Qatar, Thailand, or Yemen [111,

133, 144, 182, 205], where DNS censorship redirects users to blockpages that inform

users about the blocked content. It is also in contrast to censors using fixed DNS re-

sponses such as NXDOMAIN [43, 180, 182, 196] or addresses from private IP ranges

(e.g., 10.0.0.0/8) [37, 61, 196]. This use of globally routable IPs by the GFW has

implications for censorship detection, which needs to carefully distinguish censored
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from legitimate DNS responses, and also makes detecting and mitigating leaked DNS

responses from public resolvers non-trivial.

Despite the many previous studies that examine the technical strategies em-

ployed by the GFW, such as TCP/IP packet filtering [69, 88, 96, 193, 253] and

DNS poisoning [32, 86, 100, 229], there has yet to be a large-scale, longitudinal

examination of China’s DNS filtering mechanism. This lack of visibility is appar-

ent as the number of censored domains and the pool of IP addresses used by the

GFW in forged DNS responses have been reported differently by previous stud-

ies [32, 48, 100, 168, 183, 196, 229, 266]. In particular, the number of fake IPs observed

in poisoned responses has been increasing from nine in 2010 [48], 28 in 2011 [229], 174

in 2014 [32], to more than 1.5K recently [183]. To that end, it is necessary to have a

system for continuous, long-term monitoring of the GFW’s filtering policy that will

provide timely insights about its blocking behavior and assist censorship detection

and circumvention efforts.

In this work, we developed GFWatch (§2.7), a large-scale, longitudinal measure-

ment platform to shed light on DNS filtering by the GFW and assess its impact on

the global Internet. By building GFWatch, our primary goal is not only to answer the

questions of (1) how many censored domains are there and (2) what are the forged IP

addresses used in fake DNS responses, but also to assess (3) the impact of the GFW’s

DNS censorship policy on the global Internet, and ultimately design (4) strategies to

effectively detect and circumvent the GFW’s DNS censorship.

Using GFWatch, we tested a total of 534M distinct domains (averaging 411M

domains per day) and detected a total of 311K censored domains (§2.8). We then

used the set of censored domains to design a probing method that is able to reverse-

engineer the actual blocklist used by the GFW’s DNS filter (§2.8.1). Using this list,

we observed that 270K out of the 311K censored domains are censored as intended,

whereas the remaining 41K domains appear to be innocuous despite matching regular
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expressions used by the GFW. Through our measurements, we discovered 1,781 IPv4

and 1,799 IPv6 addresses used by the GFW in forged DNS responses (§2.9). To the

best of our knowledge, these are the largest sets of censored domains and forged IP

addresses ever discovered.

We also found evidence of geographic restrictions on Chinese domains, with the

GFW injecting DNS replies for domains based in China (e.g., www.beian.gov.cn)

(§2.10). While previous studies attribute leakage of Chinese DNS censorship to cases

where a DNS resolver’s network path transits through China’s network [48, 229], we

found that geoblocking and cases where censored domains have at least one authori-

tative name server located in China are also a significant cause of pollution of external

DNS resolvers (§2.10.1).

Based on the observed censored domains (§2.8) and forged IP addresses (§2.9),

we propose strategies to effectively detect poisoned DNS responses injected by the

GFW (§2.10.2). These techniques will not only help public DNS resolvers and other

DNS-related services to sanitize tainted records (§2.10.2), but can also assist future

development of circumvention tools to bypass the GFW’s DNS censorship (§2.11).

2.7 GFWatch Design

We designed GFWatch according to the following requirements: (1) the platform

should be able to discover as many censored domains and forged IPs as possible in

a timely manner. More specifically, GFWatch should be able to obtain and test new

domain names as they appear on the Internet. (2) As a longitudinal measurement

platform, once a domain is discovered to be censored, GFWatch should continuously

keep track of its blocking status to determine whether the domain stays censored or

becomes unblocked at some point in the future. (3) By measuring many domains

with sufficient frequency, GFWatch is expected to provide us with a good view into

the pool of forged IPs used by the GFW.
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2.7.1 Test Domains

We are interested in the timely discovery of as many censored domains as possible

because we hypothesize that the GFW does not block just well-known domains (e.g.,

facebook.com, twitter.com, tumblr.com) but also less popular or even unranked

ones that are of interest to smaller groups of at-risk people (e.g., political dissidents,

minority ethnic groups), who are often suppressed by local authorities [17]. Therefore,

we opt to curate our test list from top-level domain (TLD) zone files obtained from

various sources, including Verisign [4] and the Centralized Zone Data Service operated

by ICANN [2], which we refresh on a daily basis. Using zone files not only provides

us with a good coverage of domain names on the Internet, but also helps us to fulfill

the first design goal of GFWatch, which is the capability to test new domains as they

appear on the Internet.

Since TLD zone files contain only second-level domains (SLDs), they do not

allow us to observe cases in which the GFW censors subdomains of these SLDs.

As we show later, many subdomains (e.g., scratch.mit.edu, nsarchive.gwu.edu,

cs.colorado.edu) are censored but their SLDs (e.g., mit.edu, gwu.edu, colorado.edu)

are not. We complement our test list by including domains from the Citizen Lab test

lists (CLTL) [67], the Tranco list [162], and the Common Crawl project [1]. Between

April and December 2020, we tested a total of 534M domains from 1.5K TLDs, with

an average of 411M domains daily tested.

2.7.2 Measurement Approach

When filtering DNS traffic, the GFW does not consider the direction of request

packets. As a result, even DNS queries originating from outside the country can

trigger the GFW if they contain a censored domain, making this behavior a popular

topic for measurement studies [32, 48, 183, 229]. Based on the observation of this

filtering policy, we design GFWatch to probe the GFW from outside of China to dis-
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Figure 2.20. Probing the GFW’s DNS poisoning from outside.

cover censored domains and verify their blockage again from our controlled machines

located in China to validate our findings.

Prior work has shown that the GFW does not filter DNS traffic on ports other than

the standard port 53 [168, 183], we thus design our probe queries using this standard

destination port number. We observe that for major UDP-based DNS query types

(e.g., A, CNAME, MX, NS, TXT), the GFW injects the forged responses with an IPv4 for

type A queries and a bogus IPv6 for type AAAA queries. In some rare cases, injections

of forged static CNAME records are also observed for a small number of censored

domains (§2.9.4).

For TCP-based queries that carry censored domains, RST packets are injected

instead of DNS responses [246]. Since UDP is the default protocol for DNS in most

operating systems, we choose to probe the GFW with UDP-based queries. While

using both TCP-based and UDP-based queries would still allow us to detect censored

domains, we opt to use UDP-based queries because they also allow us to (1) collect
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the forged IPs used in the injected DNS responses, and (2) conduct our measurement

at scale, which would be otherwise more challenging to achieve because a TCP-based

measurement at the same scale would require more computing and network resources

to handle stateful network connections.

As shown in Figure 2.20, GFWatch’s main prober is a machine located in an

academic network in the United States, where DNS censorship is not anticipated. A

and AAAA DNS queries for the test domains are sent towards two hosts in China, which

are under our control and do not have any DNS resolution capabilities. Therefore,

any DNS responses returned to the main prober come from the GFW.

While prior studies have confirmed the centralized blocking policy of the GFW [80,

114, 224], to make sure this behavior is still consistent and to detect any future

changes, the two hosts in China are located in two different autonomous systems

(ASes). From our measurement results, we confirm that the DNS blocking policy

continues to be centralized, with the same censored domains detected via the two

probing paths.

After the main prober completes each probing batch, detected censored domains are

transferred to the Chinese hosts and probed again from inside China towards our con-

trol machine, as shown in Figure 2.21. This way, we can verify that censored domains

discovered by our prober in the US are also censored inside China.

Since GFWatch is designed to probe using UDP, which is a stateless and unre-

liable protocol, packets may get lost due to factors that are not under our control

(e.g., network congestion). Moreover, previous studies have reported that the GFW

sometimes fails to block access when it is under heavy load [96, 183]. Therefore,

to minimize the impact of these factors on our data collection, GFWatch tests each

domain at least three times a day.

For this paper, we use data collected during the last nine months of 2020, from

April to December. As of this writing, GFWatch is still running and collecting data
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Figure 2.21. Verifying poisoned domains from inside the GFW.

every day. The data collected will be made available to the public on a daily basis

through a dedicated web service.

2.8 Censored Domains

Over the nine months of our study, we tested a total of 534M distinct domains,

finding 311K domains triggering the GFW’s DNS censoring capability. Figure 2.22

summarizes the cumulative number of censored domains over time, as well as the num-

ber of domains added and removed from the set of censored domains each day. We

note a sharp increase in domains on August 31st because of the addition of more than

30K subdomains from the previously censored namespaces (e.g., *.googlevideo.com,

*.appspot.com) to our test domains. In this section, we describe our technique for

identifying the specific strings that trigger GFW’s DNS censorship (§2.8.1). We use

this technique to remove unrelated domains that match the blocking rules (“overblocked”

domains) and then characterize domains censored by the GFW in Section 2.8.2.
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Figure 2.22. Cumulative censored domains discovered over time and daily
added/removed censored domains.

2.8.1 Identifying Blocking Rules

When considering the domains filtered by the GFW, there are many with com-

mon second-level and top-level domains (e.g., numerous blocked domains of the form

*.blogspot.com or *.tumblr.com). This observation led us to develop a clustering

method for domains that are blocked based on the same underlying rule. For exam-

ple, if subdomain.example.com and all subdomains of example.com are blocked, we

consider example.com as the blocked domain. We note that when a subdomain is

blocked, the covering domains may not be blocked (e.g., cs.colorado.edu is blocked,

whereas colorado.edu is not (§2.8.2)).

Inspired by a previous study of GFW’s DNS censorship [32], we use the following

technique to identify the strings that trigger blocking (i.e., the most general string

such that all domains containing this string are blocked). For a given domain, we

test the following permutations of each censored domain and random strings:

• Rule 0 censored domain

• Rule 1 censored domain{.rnd str}

76



• Rule 2 censored domain{rnd str}

• Rule 3 {rnd str.}censored domain

• Rule 4 {rnd str}censored domain

• Rule 5 {rnd str.}censored domain{.rnd str}

• Rule 6 {rnd str.}censored domain{rnd str}

• Rule 7 {rnd str}censored domain{.rnd str}

• Rule 8 {rnd str}censored domain{rnd str}

Among these rules, only Rules 1 and 3 are correct forms of a domain with a differ-

ent top-level domain (Rule 1) or subdomain (Rule 3). In contrast, the rest represents

unrelated (or non-existent) domains that happen to contain the censored domain

string. We refer to censored domains that are grouped with a shorter domain string

via rules other than Rules 1 or 3 as being overblocked, because they are not subdo-

mains of the shorter domain, but are actually unrelated domains that are textually

similar (e.g., the censored domain mentorproject.org contains the shorter domain

string torproject.org that actually triggers censorship).

Using these rules to generate domains and testing them with GFWatch, we identify

the most general form of each censored domain that triggers censorship. We refer to

these shortest censored domains as the “base domain” from which the blocking rule

is generated. We discovered a total of 138.7K base domains from the set of 311K

censored domains.

Considering base domains allows us to observe growth in the underlying blocking

rules as opposed to the raw number of domains. We also observe fewer new base

domains over time and avoid sudden jumps in censored domains when large numbers

of subdomains of an existing base domain are observed. Figure 2.23 shows the cumu-

lative number of base domains discovered over the nine-month period and the daily

addition and removal of these domains. As of December 31st, 126K base domains are

still being censored.
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Figure 2.23. Cumulative base censored domains discovered over time and daily
added/removed base censored domains.

Of 138.7K base domains, 11.8K are censored independently (Rule 0). In other

words, these domains are censored as they are, but do not trigger GFW’s DNS cen-

sorship when concatenated with random strings. However, in an ascending order

of severity, we find that 4, 113.8K, 10.9K, 1.4K, and 696 distinct base domains are

blocked under Rules 2, 3, 4, 6, and 8, respectively. There are no domains for Rules 1,

5, and 7, since domains blocked under these rules are already covered by other more

general rules. While the vast majority of base censored domains fall under Rule 3,

there are more than 13K base domains blocked under other rules, causing unrelated

domains to be overblocked.

We utilize the base domains to identify cases of overblocking, where an unrelated

domain matches a more general censored domain string. Specifically, we consider

domains that match a base domain, but are not subdomains of the base domain, as

being overblocked. This is because these domains are unrelated to the base domain

despite being textually similar. With this definition, we find that 41K of the 331K

censored domains are overblocked. The top three base domains that cause the most
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Table 2.10. Top base censored domains that cause most overblocking of innocuous
domains.

# domains Base censored domains Sample innocuous domains

impacted

11,227 919.com 455919.com, rem99919.com
niwa919.com, xaa919.com

2,346 jetos.com ccmprojetos.com, csprojetos.com
itemsobjetos.com, dobobjetos.com

1,837 33a.com 87833a.com, 280333a.com
xn---72caa7c0a9clrce0a1fp33a.com

xn---zck4aye2c2741a5qvo33a.com

1,574 9444.com mkt9444.com, 15669444.com
3329444.com, 5719444.com

1,547 sscenter.net dentalwellnesscenter.net, swisscenter.net
chesscenter.net, childlosscenter.net

1,487 1900.com faber1900.com, salah1900.com
phoenixspirit1900.com, interiors1900.com

1,392 98a.com p98a.com, 72898a.com, 1098a.com
xn---1-ieup4b2ab8q5c0dxj6398a.com

1,144 ss.center hss.center, icass.center
limitless.center, ass.center

1,089 reddit.com bestiptvreddit.com, booksreddit.com
cachedreddit.com, geareddit.com

789 visi.tk erervisi.tk, yetkiliservisi.tk
buderuservisi.tk, bodrumklimaservisi.tk

overblocking are 919.com, jetos.com, and 33a.com. These three domains are respon-

sible for a total of 15K unrelated domains being blocked because they end with one

of these three base domains (and are not subdomains of them). Table 2.10 provides

more details on the base domains responsible for the most overblocking. Domain

owners may consider refraining from registering domain names containing these base

domains to avoid them being inadvertently blocked by the GFW.

Table 2.10 shows the top ten base censored domains blocked under Rule 4 that

we have discussed in §2.8.1. The blocking rule applied on these ten domains results

in overblocking of more than 24K innocuous domains, which is more than half of all

innocuous domains. The third column shows some samples of innocuous censored

domains that GFWatch has discovered. The impacted innocuous domains presented

in this table are all active and hosting some contents at the time of writing this
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paper. Except those that do not allow Web Archive’s crawler, we have also saved a

snapshot of these domains at https://web.archive.org for future reference in case

these domains become inactive. In contrast, most base censored domains shown in

the second column are not currently hosting any content. Therefore, one may wonder

why many seemingly inconsequential domains are being censored.

To make sure that these seemingly inconsequential censored domains were not

blocked because the GFW was using an imprecise classifier (e.g., a Bloom filter)

for fast classification, we tested 200M randomly generated nonexistent domains and

found that none were censored. It is worth noting that many censored domains

discovered by GFWatch have been blocked before the launch of our platform. Prior

to our testing, they might have served “unwanted” content that we were not aware

of. Moreover, the GFW is known to conduct blanket blocking against websites that

run editorials on “unwanted” topics without carefully verifying their contents. Once

domains are censored, they are often kept in the GFW’s blocklist for a long time

regardless of their activity [197].

As can be seen from the table, the GFW’s overblocking design affects not only

usual ASCII-based innocuous domains, but also Internationalized Domain Names

(IDNs), i.e., those starting with ‘‘xn---’’. Of 41K innocuously blocked domains,

we find a total of 1.2K IDNs are overblocked. Our finding shows that the current

DNS-based blocking policy of the GFW has a widespread negative impact on the

domain name ecosystem.

2.8.2 Characterizing Censored Domains

We now characterize the 138.7K base domains identified in §2.8.1. We focus on

these base domains to avoid the impact of domains with numerous blocked subdo-

mains on our results. Focusing on base domains also allows us to avoid analyzing

innocuous domains that are overblocked based on our previous analysis.
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Figure 2.24. CDF of the popularity ranking for base censored domains (in log scale).

Popularity of censored domains. We find that most domains blocked by the

GFW are unpopular and do not appear on lists of most popular websites. We use the

rankings provided by the Tranco list [162], which combines four top lists (Alexa [26],

Majestic [172], Umbrella [237], and Quantcast [202]) in a way that makes it more sta-

ble and robust against malicious manipulations [198]. The daily Tranco list contains

about 7M domains ranked by the Dowdall rule [? ].

Figure 2.24 shows the CDF of the popularity ranking for the 138.7K blocked base

domains. Only 1.3% of them are among the top 100K most popular domains, which

is the statistically significant threshold of the popularity ranking as suggested by both

top-list providers and previous studies [27, 219]. Even when considering all domains

ranked by the Tranco list, only 13.3% of the base censored domains fall within the

list’s ranking range, while the remaining are unranked. This finding highlights the

importance of GFWatch’s use of TLD zone files to enumerate the set of potentially

censored domains.

Types of censored content. For domain categorization, we use a service provided

by FortiGuard [6], which has also been used by other censorship measurement stud-

81



n
ew

ly
ob

se
rv

ed
d
om

ai
n

b
u
si

n
es

s
p
or

n
og

ra
p
hy

in
fo

rm
at

io
n

te
ch

n
ol

og
y

n
ot

ra
te

d
p
ro

xy
av

oi
d
an

ce
ga

m
b
li
n
g

p
er

so
n
al

w
eb

si
te

s
an

d
b
lo

gs
en

te
rt

ai
n
m

en
t

n
ew

s
an

d
m

ed
ia

m
al

ic
io

u
s

w
eb

si
te

s
ot

h
er

0K

10K

20K

30K

40K

50K

60K

B
as

e
ce

n
so

re
d

d
om

ai
n

s

0

20

40

60

80

100

C
u

m
u

la
ti

ve
p

er
ce

n
ta

ge

Figure 2.25. Top ten categories of domains censored by the GFW.

ies [182, 183, 230], to make our analysis comparable. Figure 2.25 shows the top-ten

domain categories censored by the GFW. We find that nearly half of the domains

we observe are not currently categorized by FortiGuard, with 40% categorized as

“newly observed domain,” and 5.5% categorized as “not rated.” This is a result of

the large number of domains in our dataset, many of which may not be currently

active (§2.11.3).

Apart from the “newly observed domain” and “not rated” categories, we find

that “business,” “pornography,” and “information technology” are within the top-five

dominant categories. This finding is different from the results reported by the most

recent related work to ours [183], which observed “proxy avoidance” and “personal

websites and blogs” as the most blocked categories. This difference stems from the

counting process used in [183], which does not aggregate subdomains, while their

test list is a fixed snapshot of 1M domains from the Alexa list, which contains many

subdomains of *.tumblr.com and *.blogspot.com.
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COVID-19 related domains. On December 19th, 2020, the New York Times

reported that the Chinese Government issued instructions for suppressing the free

flow of information related to the COVID-19 pandemic [212]. GFWatch has detected

numerous domains related to COVID-19 being censored by the GFW through DNS

tampering, including covid19classaction.it, covid19song.info covidcon.org,

ccpcoronavirus.com, covidhaber.net, and covid-19truth.info.

While most censored domains are discovered to be blocked soon after they ap-

pear in our set of test domains, we found that there was some delay in block-

ing ccpcoronavirus.com, covidhaber.net, and covid-19truth.info. Specifically,

ccpcoronavirus.com and covidhaber.net first appeared on our test lists in April

but are not blocked until July and September, respectively. Similarly, covid-19truth.info

appeared in our dataset in September but was not censored until October. The large

difference in the time the GFW takes to censor different domains shows that the

blocklist is likely to be curated by both automated tools and manual efforts.

Educational domains. In 2002, Zittrain et al. [266] reported DNS-based filtering of

several institutions of higher education in the US, including mit.edu, umich.edu, and

gwu.edu. While “education” is not one of the top censored categories, we find numer-

ous blocked education-related domains, including armstrong.edu, brookings.edu,

citizenlab.ca, feitian.edu, languagelog.ldc.upenn.edu, pori.hk, soas.ac.uk,

scratch.mit.edu, and cs.colorado.edu.

Although censorship against some of these domains is not surprising, since they be-

long to institutions well-known for conducting political science research and may host

content deemed as unwanted, we are puzzled by the blocking of cs.colorado.edu.

While the University of Colorado’s computer science department is not currently

using this domain to host their homepage, the blocking of this domain and its en-

tire namespace *.cs.colorado.edu would prevent students in China from accessing

other department resources (e.g., moodle.cs.colorado.edu). This is another evi-
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dence of the overblocking policy of the GFW, especially during the difficult time of

the COVID-19 pandemic when most students need to take classes remotely.

2.9 Forged IP Addresses

The use of publicly routable IPs owned by foreign entities not only confuses the

impacted users and misleads their interpretation of the GFW’s censorship, but also

hinders straightforward detection and circumvention [120]. Therefore, knowing the

forged IPs and the pattern in which they are injected (if any) is essential. In this

section, we analyze the IPs collected by GFWatch to examine whether there exists

any specific injection pattern based on which we can develop strategies to effectively

detect and bypass the GFW’s DNS censorship.

2.9.1 Forged IP Addresses over Time

Extracting the forged IPs from all poisoned DNS responses captured by GFWatch,

we find a total of 1,781 and 1,799 unique forged IPv4 and IPv6 addresses from poi-

soned type-A and type-AAAA responses, respectively. The forged IPv4 addresses

are mapped to multiple ASes owned by numerous non-Chinese entities, including 783

(44%) IPs of Facebook, 277 (15.6%) IPs of WZ Communications Inc., 200 (11.2%)

IPs of Twitter, and 180 (10.1%) IPs of Dropbox. On the other hand, all IPv6 ad-

dresses are bogus and belong to the same subnet of the predefined Teredo prefix [142],

2001::/32. Therefore, we will focus our analysis on the forged IPv4 addresses here-

after because the pattern of IPv6 injection is obvious and thus should be trivial to

detect and circumvent.

Figure 2.26 shows the number of unique IPv4 addresses that GFWatch has discov-

ered over the measurement period considered in this paper. The gray bar plot shows

the number of unique IPs observed daily, and the blue bar plot shows the number of
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Figure 2.26. Number of forged IPv4 addresses detected over time by GFWatch.

new IPs that were not observed previously. We add a second y-axis on the right side

of the figure for better visibility of the blue bars.

Our initially collected data overlaps with the data collected during the final month

of [183], which is the most recent related work to our study. During this period, our

observation aligns with the result reported in Figure 2 of [183], i.e., the number of

unique forged IPs is about 200 with no new IPs detected. However, starting in May,

GFWatch began to detect more forged IPs every day until September, with about

10–20 new IPs added daily. These gradual daily additions, together with a significant

increase of more than 300 previously unobserved IPs at the end of August, have

brought the total number of forged IPs to more than 1.5K. The number of forged IPs

converges to 1.7K over the last four months of 2020.

Comparing the IPs observed by GFWatch with the ones reported in [183], we

find that all IPs observed by [183] have been used again in poisoned DNS responses,

regardless of the major drop reported on November 23rd, 2019. In addition, we find

188 new IPs that were not observed previously in [183]. Given how close the timeline
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is between our work and [183], this finding of the unpredictable fluctuation in the

number of forged IPs emphasizes the importance of having a large-scale longitudinal

measurement system to keep track of erratic changes in the GFW’s blocking behavior.

Therefore, we are committed to keeping GFWatch running as long as possible, rather

than just creating it as a one-off effort.

Prior reports [80, 114, 224] and our detection of the same censored domains via

two different network paths (§2.7) have confirmed the centralized blocking policy

of the GFW in terms of the domains being censored. Nevertheless, we are also

interested in investigating whether the forged IPs are consistent at different network

locations, because our ultimate goal is to collect as many forged IPs as possible and

demystify their injection pattern to assist us in developing effective strategies for

censorship detection and circumvention. Therefore, we have also conducted an extra

measurement by probing across different network locations in China to confirm that

the pool of forged IPs discovered by GFWatch is representative enough.

2.9.2 Consistency of Forged IP Addresses Across Different Network Lo-

cations

To confirm whether the pool of forged IPs discovered by GFWatch (§2.9) is rep-

resentative enough, we probe different network locations in China to compare the

forged IPs observed from these locations and the ones seen by GFWatch. For this

experiment, we obtain the daily updated pfx2as dataset provided by CAIDA [59], and

extract prefixes located in China by checking them against the MaxMind dataset [174],

which we also update biweekly. Unlike the measurement conducted between our own

controlled machines located at two sides of the GFW, this task requires us to send

DNS queries, encapsulating censored domains, to destinations we do not own. Al-

though similar large-scale network probing activities are widely conducted nowadays
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Figure 2.27. Number of forged IPv4 addresses detected over time by probing dif-
ferent network prefixes in China.

by both academia [89, 196, 230, 240] and industry [7, 208], our measurement must be

designed in a careful and responsible manner.

Our sole purpose of this measurement is to deliver probing queries passing through

the GFW’s infrastructure at different network locations to trigger censorship, instead

of having the probing packets completely delivered to any alive hosts. Therefore, we

craft our probing packets using the routing address of a given prefix as the destination

IP. According to the best current practice [109], except for the case of a /32 subnet

with only one IP, the routing address of a subnet should not be assigned to any

device because it is solely used for routing purposes. For example, given the prefix

1.92.0.0/20 announced in the pfx2as dataset, we craft our probing packet with the

destination as 1.92.0.0. With this probing strategy, we can reduce the risk that our

packets will hit an alive host while still being able to deliver them across the GFW’s
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infrastructure at different network locations. To reduce the risk even further, we opt

to only probe prefixes whose subnet is less-specific than /24.

In spite of the standardized practices in assigning IP and the extra care that we

have taken in designing our measurement, we also follow a common practice that is

widely used in research activities that involve network scanning, i.e., allowing opt-

out. More specifically, we accompany our probing DNS queries with a non-censored

domain under our control, from which the information about our study and a contact

email address can be found to request opt-out from our measurement. Since the

launch of GFWatch, we have not received any complaints or opt-out requests.

Figure 2.27 show the cumulative number of forged IPs discovered daily and over

the whole period of our measurement. Similar to Figure 2.26, the number of forged

IPs addresses observed initially in April is also about 200. However, we did not see any

gradual increase in the number of forged IPs from May as seen in Figure 2.26. After

waiting about two months without seeing any new IPs observed from probing different

prefixes, we have learned that this is due to the fact that we only use one known

censored domain for probing the prefixes. This is because of an earlier precaution

that these probed destinations are not owned by us, thus we should try to limit the

amount of probing traffic as much as possible. However, it turned out that we need

to probe more than just one domain to be able to obtain a similar set of forged IP

addresses detected earlier by GFWatch.

We then decide to add more domains to this test, probing a total of 22 censored

domains per prefix. These domains are selected from several categories, including

advocacy organizations, proxy avoidance, news and media, social network, personal

websites and blogs, shopping, instant messaging, etc. As expected, the cumulative

number of forged IPs immediately increases to almost 1K the day we revise our test

domains. Similar to Figure 2.26, the cumulative number of forger IPs also increase

gradually towards the end of August. With a major increase of more than 300 forged
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Figure 2.28. CDF of censored responses with respect to the injection frequency of
forged IPv4 addresses detected by GFWatch.

IPs, the number of all forged IPs observed from our prefixes probing measurement

also converges to above 1.5K by the end of December.

While the number of forged IPs obtained from probing the prefixes on some days,

especially from July to September, is higher than what GFWatch observed during

this period, we find that 96% of the forged IPs observed from prefixes probing have

already detected by GFWatch. Conducting the same injection frequency analysis

on these forged IPs gives us the same results as found in §2.9.3. In other words,

the most frequently injected IPs discovered by GFWatch and from probing different

prefixes are the same. To this end, we could confirm that the coverage of forged

IPs discovered by GFWatch is representative and sufficient for us to develop effective

detection (§2.10.2) and circumvention strategies (§2.11).

2.9.3 Injection Frequency of Forged IPs

Due to the erratic changes in the number of forged IPs over time, prior studies

have often concluded that forged IPs are injected randomly. Through the longitudinal
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measurement conducted at scale, GFWatch has tested and detected a large enough

number of censored domains and forged IPs that allows us to provide more insights

into this aspect. Analyzing the injection frequency of each forged IP, we find that not

all forged IPs are equally injected in censored responses, i.e., their injection pattern

is not entirely random.

Figure 2.28 shows the CDF of censored responses with respect to the injection

frequency of forged IPs observed in these responses. The x-axis (in log scale) indicates

the number of forged IPs, sorted by their injection frequency. There are three periods

during which the cumulative number of forged IPs shows different patterns (i.e., April,

May to August, and September to December, as shown in Figure 2.26). Thus, we

analyze the injection frequency of these three periods independently and compare

them with the injection frequency of all forged IPs discovered over the whole period

of our measurement.

We can see that the forged IPs’ injection frequencies are similar (almost overlap-

ping) between the April and May–August lines. In other words, although the number

of forged IPs increases from about 200 at the end of April to more than 1.5K over the

May–August period, the initial 200 forged IPs are still responsible for 99% of censored

responses. On the other hand, the additional 1.3K new forged IPs discovered from

May to August are in the long tail and only used in 1% of all censored responses.

Similarly, even after the remarkable increase to more than 1.7K forged IPs at the end

of August, only 600 of them are frequently injected from September to December,

occupying 99% of the censored responses. Finally, when looking at all the censored

responses and forged IPs discovered over the whole period, the 200 most frequently

injected forged IPs discovered in April are still responsible for more than 50% of all

censored responses, whereas only 600 (33.6%) out of 1,781 forged IPs are responsible

for 99% of all censored responses, the remaining 1.1K forged IPs in the long tail are

used in only 1% of censored responses.
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Table 2.11. Groupings of censored domains with respect to different sets of forged
IPs injected in their poisoned responses.

G # Domains # IPs Forged IPs/CNAMEs

0 41 0 cathayan.org, mijingui.com, upload.la, yy080.com

1 12 1 why.cc → 216.139.213.144

2 7 1 yumizi.com → 66.206.11.194

3 57 1 46.38.24.209, 46.20.126.252, 61.54.28.6, 89.31.55.106
122.218.101.190, 123.50.49.171, 173.201.216.6, 208.109.138.55

4 3,295 3 4.36.66.178, 64.33.88.161, 203.161.230.171

5 1,711 4 8.7.198.45, 59.24.3.173, 243.185.187.39, 203.98.7.65

6 2,724 4 8.7.198.46, 59.24.3.174, 46.82.174.69, 93.46.8.90

7 4 7 4.36.66.178, 64.33.88.161, 203.161.230.171, 59.24.3.174
8.7.198.46, 46.82.174.69, 93.46.8.90

8 9 7 4.36.66.178, 64.33.88.161, 203.161.230.171, 8.7.198.45
59.24.3.173, 243.185.187.39, 203.98.7.65

9 4,551 10 23.89.5.60, 49.2.123.56, 54.76.135.1, 77.4.7.92
118.5.49.6, 188.5.4.96, 189.163.17.5, 197.4.4.12
249.129.46.48, 253.157.14.165

10 remaining >560 [Omitted due to the large number of forged IPs]
∼ 300 Supplementary data will be made publicly available

domains and updated on a daily basis.

2.9.4 Static and Dynamic Injections

One of the GFW behaviors is injecting different sets of forged IPs for different

groups of censored domains. This behavior was first reported in [183], where the

authors identify a total of six groups of censored domains that are poisoned with

different sets of forged IPs. From data collected by GFWatch, we have discovered a

total of 11 groups shown in Table 2.11. Comparing these groups with those reported

in [183], we find five similar groups that have the same set of forged IPs/CNAMEs,

including Groups 0, 4, 5, 6, and 9. Understandably, we discover more groups because

our test list covers far more domains compared to [183], where a fixed Alexa top list

of only 1M domains was used for the whole measurement period.

An instance of forged response containing a CNAME was reported in [183] but

excluded from the analysis since it did not seem to be prevalent. However, with a
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larger dataset, we find that the injection of CNAME in forged responses can happen in

three different groups of censored domains, triggering the GFW to inject six different

CNAME answers. As depicted in Table 2.11, there are 41 censored domains that can

trigger the injection of either one of the four CNAMEs listed. Domains in Groups 1

and 2 can trigger a CNAME injection, accompanied by an IP in the forged response.

Note that these two IPs are not the actual IPs of the two CNAMEs. Similarly, there

are eight distinct subgroups of domains within Group 3 that can constantly trigger

either one of the eight forged IP listed. For example, qcc.com.tw will always trigger

a forged response of 89.31.55.106. The same pattern applies in other Groups from

4 to 9, i.e., resolving domains within these groups will always trigger the GFW to

inject one of the forged IPs listed on the 4th column. The remaining of about 300K

censored domains are grouped together since they trigger the GFW to dynamically

inject a much larger number of more than 560 different forged IPs.

Revealing these injection patterns for different groups of censored domains is cru-

cial for developing an effective strategy to detect and circumvent the GFW’s DNS

censorship (§2.10). Especially, knowing whether a censored domain belongs to one of

the static groups (Groups 0 to 9) or the dynamic group (Group 10) is necessary to

avoid misclassifying consistent forged responses as “legitimate” (§2.11).

2.10 Censorship Leakage and Detection

The GFW’s bidirectional DNS filtering behavior has been reported as the cause

of poisoned DNS responses being cached by public DNS resolvers outside China,

when DNS resolution paths unavoidably have to transit via China’s network [133,

229]. However, in this section, we show that DNS poisoning against many domains

whose authoritative name servers are located in China is another primary reason why

poisoned DNS records have tainted many public DNS resolvers around the world.

We then show how the datasets of censored domains and forged IPs discovered by
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GFWatch can help with detecting and sanitizing poisoned resource records from pub-

lic DNS resolvers’ cache.

2.10.1 Geoblocking of China-based Domains

On August 8th, 2020, GFWatch detected the blockage of www.beian.gov.cn,

which is managed by the Chinese Ministry of Industry and Information Technol-

ogy. This service allows website owners to obtain and verify their website’s Internet

Content Provider (ICP) license, which is obligated to legally operate their site in

China. This domain has two authoritative name servers, dns7.hichina.com and

dns8.hichina.com, which are hosted on 16 different IPs. However, checking against

the latest MaxMind dataset [174], we find that all of these IPs are located inside

China. Consequently, the DNS censorship against this domain by the GFW will cause

DNS queries issued from outside China to be poisoned since all resolution paths from

outside China will have to cross the GFW.

We initially attributed this blockage to an error or a misconfiguration because

previous works have sometimes noticed intermittent failures in the GFW [96, 183].

Furthermore, no prior studies have ever found such a strange blocking behavior—

the GFW of China censors a Chinese government website. However, at the time of

composing this paper, we are still observing www.beian.gov.cn being censored by

the GFW, almost half a year since its first detection. Hence, this is a clear case

of geoblocking because we can still visit this domain normally from our controlled

machines located inside China. To the best of our knowledge, ours is the first academic

research to document this geoblocking behavior of the GFW.

Note that this geoblocking is a result of the GFW’s DNS censorship, which is

not the same as geoblocking enforced at the server side [175]. Geoblocking of China-

based websites has been noticed previously but is enforced by their website owners.

For instance, political researchers have been using https://www.tianyancha.com/
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Figure 2.29. Visit to a domain geoblocked by the GFW ends up with an error page
from Facebook.

to investigate the ownership of Chinese companies, but since 2019, this website blocks

visitors from non-Chinese IPs and shows a clear message for the reason of denying

access.

The GFW’s blocking of China-based domains using bidirectional DNS filtering in

combination with the use of forged IPs owned by non-Chinese entities impacts not

only Internet users in China, but also users from around the world. For instance,

upon visiting the aforementioned geoblocked domain from a non-censored network

outside China, we end up with an error page served from Facebook, as shown in

Figure 2.29.

Most ordinary Internet users would not know the underlying reason why their visit

to a given China-based domain (e.g., www.beian.gov.cn) that is clearly unrelated to

Facebook would end up with an error page from Facebook. The fact that the GFW

frequently changes the forged IPs used in fake DNS responses (§2.9) would cause

even more confusion to the affected users. Depending on which fake IP is injected in

the spoofed response, users may encounter a different error page from Figure 2.29.

Even more confusing, the visit to this domain from outside China will intermittently
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succeed because the poisoned responses injected by the GFW sometimes fail to arrive

ahead of the legitimate one (§2.11).

At the server side of the forged IPs being used for injecting poisoned responses,

their operators would also be puzzled as to why many HTTP requests are sent to their

servers, asking for hostnames they do not serve. For the above example, an error log

at a Facebook server will show that someone was trying to visit www.beian.gov.cn

on a Facebook IP, which obviously does not serve any content for that domain, thus

the returned error page. As we do not have access to the error logs of Facebook and

other organizations whose IPs are used for injecting poisoned DNS responses by the

GFW, we cannot quantify the actual cost (e.g., the overhead of serving unsolicited

connections, error pages) of such an abusive DNS redirection behavior. However,

given the large number of more than 311K censored domains discovered (§2.8) and

only a small pool of forged IPs being used (§2.9), we believe that the GFW’s injec-

tion policy would cost these affected organizations a non-negligible overhead on their

servers. Past reports have shown that this abusive design of the GFW can lead to

resource exhaustion attacks on specific IPs, making them inaccessible [71, 120, 143].

To estimate the extent to which the above geoblocking and overblocking policies

have impacted the global Internet, we analyze the location of authoritative name

servers of 138.7K base censored domains and 41K innocuously blocked domains, using

the MaxMind dataset [174]. As shown in Figure 2.30, 38% (53K) of the base censored

domains and 21.6% (8.8K) of the innocuous censored domains have at least one

authoritative name server in China. In other words, there is always a non-zero chance

that DNS resolution for these 61.8K domains from outside China will be poisoned,

causing their visitors to potentially end up with an error page similar to the above

case. On the other hand, 19.4% (26.9K) of base censored domains and 12.5% (5.1K)

innocuously blocked domains have all of their authoritative name servers in China,
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Figure 2.30. CDF of the number of authoritative name servers located inside China
as a percentage of 138.7K base censored domains and 41K innocuously blocked do-
mains.

meaning that the resolutions for these 32K domains from outside China will always

cross the GFW, thus being poisoned.

2.10.2 Detection

A common operational mechanism of DNS censorship is that the censor takes

advantage of the time-honored property of UDP-based DNS resolution to inject poi-

soned responses, racing against the legitimate response. Depending on the censored

domain being queried, the GFW can even emit up to three responses. This behav-

ior of injecting multiple fake responses was first reported recently in [183]. For the

completeness of our investigation, we have also identified the three different injectors

based on the data collected by GFWatch.

It was first reported by [183] that the GFW comprises multiple injectors that

are responsible for DNS poisoning. Depending on the domain being queried (e.g.,

google.sm), multiple forged responses can be triggered simultaneously to increase

the chance of successfully poisoning censored clients if one of the injectors is over-

96



loaded, and make detection and circumvention non-trivial. From the data collected

by GFWatch, we have confirmed the same injection behavior. More specifically, there

are three injectors, which can be differentiated by the “DNS Authoritative Answer”

flag in the DNS header and the “do not fragment” flag in the IP header. Injector 1 has

the “DNS Authoritative Answer” bit set to 1, Injector 2 has the “DNS Authoritative

Answer” bit set to 0 and “do not fragment” bit set to 1, whereas Injector 3 has the

“DNS Authoritative Answer” bit set to 0 and “do not fragment” bit set to 0.

Based on these fingerprints, we then cluster 311K censored domains into three

groups with respect to the three injectors. Figure 2.31 depicts the number of censored

domains observed over time for each injector. Injector 2 is responsible for 99% of the

censored domains, whereas Injectors 3 and 1 are responsible for only 64% and less

than 1% (2K) of censored domains, respectively. Note that all domains censored by

Injector 3 are also censored by Injector 2, while there are 1.7K domains censored only

by Injector 1, but not other injectors.

From the GFW’s perspective, the injection of multiple fake responses not only

increases the chance of successfully poisoning a censored client but also makes it more

costly and challenging to detect and circumvent its DNS censorship [86]. However,

based on the pool of forged IPs and their injection patterns that we have revealed

in §2.9, detecting DNS censorship by the GFW can be done effectively by checking the

returned IP address against the pool of forged IPs discovered by GFWatch. Although

this strategy may not detect all poisoned responses due to some rare forged IPs that

GFWatch might have not observed in the long tail, from the analysis of injection

frequency in §2.9.3, which we have also verified its consistency across different network

locations (§2.9.2), we are confident that this detection technique can identify more

than 99% of the poisoned responses.

We next employ this detection technique to expose poisoned resource records that

have tainted public DNS resolvers around the world. In particular, once a censored
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Figure 2.31. Number of censored domains per injector.

domain is detected by GFWatch, we query them against popular DNS resolvers and

examine if its response matches any injection pattern we have revealed in §2.9. Ta-

ble 2.12 shows the top ten resolvers that have been polluted with the highest number

of censored domains. In total, we find 77K censored domains whose poisoned resource

records have polluted the cache of all popular public DNS resolvers that we examined.

Of these censored domains, 61K are base censored domains. This result aligns well

with our earlier speculation in §2.10.1.

This finding shows the widespread impact of the bidirectional blocking behavior

of the GFW, necessitating the operators of these public DNS resolvers to have an

effective and efficient mechanism to prevent these poisoned resource records from

polluting their cache, to assure the quality of their DNS service. Furthermore, the 61K

base censored domains whose DNS queries from outside China are censored is likely
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Table 2.12. Top ten public DNS resolvers with the highest number of censored
domains whose poisoned resource records have polluted their cache.

# Domains Resolver # Domains Resolver

74,715 Google 63,295 OpenDNS
71,560 Cloudflare 62,825 Comcast
65,567 OpenNIC 56,913 CleanBrowsing
65,538 FreeDNS 56,628 Level3
64,521 Yandex 55,795 Verisign

the reason why many censored domains are classified as “newly observed domain” or

“not rated” in §2.8.2. This is because FortiGuard’s crawlers, which are likely located

outside China, probably could not obtain the correct IPs of these domains, thus failing

to fetch and classify them.

2.11 Circumvention

We now show how insights gained from analyzing the censored domains (§2.8)

and forged IPs discovered by GFWatch over time (§2.9) can assist us in developing

strategies to effectively and efficiently circumvent GFW’s DNS censorship.

2.11.1 Strategy

The GFW’s bidirectional DNS filtering not only impacts in-China users but also

prevents users outside China from obtaining legitimate resources records of geograph-

ically restricted domains based in China (§2.10.1). Therefore, an effective DNS cen-

sorship evasion strategy would benefit not only (1) users inside China who need to

access censored domains hosted outside China, but also (2) users outside China who

need access to geoblocked domains based in China. Both (1) and (2) also include

open DNS resolvers located at both sides of the GFW that want to prevent poisoned

responses from polluting their DNS cache.

Since the GFW operates as an on-path injector and does not alter the legitimate

response from the actual DNS resolver chosen by a client, a circumvention strategy
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for the client is to not quickly accept any returned responses when querying a cen-

sored domain. Instead, the client should wait for an adjustable amount of time for

all responses to arrive, as suggested in [86]. Upon receiving more than one IPv6

answer, the client can filter out the bogus ones that belong to the Teredo subnet

2001::/32. Furthermore, for IPv4 answers, the client can check them against the

injection patterns and forged IPv4 addresses discovered in §2.9.

In our circumvention strategy, for each censored domain we need at least a trust-

worthy resolver that possesses its genuine resource record(s). Popular open resolvers

(e.g., 8.8.8.8, 1.1.1.1) are often considered as trustworthy sources when it comes

to censorship evasion. However, we have shown that the vast majority of public DNS

resolvers have been polluted with poisoned resource records (§2.10.2). Therefore,

we opt not to use them in this case, especially for obtaining the legitimate resource

records of geoblocked domains based in China. The only remaining source that is

immune to the GFW’s poisoned responses and has a given censored domain’s genuine

resource record(s) is its authoritative name servers. This information is available in

the zone files.

We send DNS queries for 138.7K base censored domains and 41K innocuous do-

mains to their authoritative name servers from our controlled machines located at

both sides of the GFW. We then expect to observe both censored and non-censored

resolutions at two sides of the GFW as a result of this experiment. More specifically,

from our US machine, resolutions for domains whose authoritative name servers are

located outside China will not be censored as their queries will not cross the GFW,

whereas resolutions for domains whose authoritative name servers are located inside

China are expected to be censored. On the contrary, resolutions from our China ma-

chine towards authoritative name servers located inside China will not be censored,

while those queries sent to authoritative name servers outside China will.
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2.11.2 Evaluation

To evaluate the effectiveness of our method, we apply the proposed circumvention

strategy to filter out poisoned responses for those censored resolutions and retain

their “legitimate” responses, which we then compare with actual legitimate responses

returned from non-censored resolutions conducted at the other side of the GFW. We

find that our circumvention strategy is highly effective, with an accuracy rate of 99.8%.

That is, 99.8% of responses classified as “legitimate” match the actual legitimate

responses obtained from non-censored resolutions. From a total of 1,007,002,451

resolutions that the GFW poisons, 1,005,444,476 responses classified as “legitimate”

by our strategy contain the same resource records (i.e., same IPs, CNAMEs, or IPs

under the same AS for domains hosted on Content Delivery Networks) with those

observed from non-censored resolutions. As discussed in §2.9.3, there are a small

number of cases that we could not classify due to the invisibility of those rarely

injected forged IPs in the long tail that GFWatch did not observe. This finding

highlights the importance of having an up-to-date and continuous view into the pool

of forged IPs for effectively circumventing the GFW’s DNS censorship.

To further assist in future adoptions of our strategy so that it will not significantly

downgrade the normal performance of other UDP-based DNS resolutions for non-

censored domains, we analyze the hold-on duration, which the client should wait only

when resolving a censored domain, instead of holding on for every resolution.

Figure 2.32 shows the cumulative distribution of the delta time between the first

forged response and the legitimate one. The (red) dash line is the CDF of the delta

time measured at our China machine, and the (blue) solid line is the CDF of this

delta time measured at our US machine. On the x-axis, a positive value means a

poisoned response arrives before the legitimate one. In contrast, a negative value

indicates that the legitimate response has arrived ahead of the fake ones.
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Figure 2.32. CDF of delta time between forged and legitimate responses measured
from CN and US controlled machines.

As shown in the figure, the GFW can successfully poison more than 99.9% of all

resolutions that carry censored domains, performed from our China machine towards

authoritative name servers located outside China. 99% of poisoned responses hit our

machine within 364ms ahead of the legitimate ones. Although this delta time may

vary, depending on the relative distance between the client and the GFW, for any

client whose network location is close to ours, this is the amount of extra time they

should wait when resolving a censored domain from inside China. In other words,

upon receiving a DNS response after querying a censored domain, the client should

wait, at most, an extra 364ms for the legitimate one to arrive. Users at different

locations can heuristically probe known censored domains to estimate the hold-on

duration that is representative for their location.

From the GFW’s perspective, forged responses should ideally arrive at the client

before the legitimate one. From our US machine, we find that this is not always

true. Due to the unreliable and stateless nature of UDP packets that might get lost

or delayed when transferred between two distant locations, and perhaps poisoning
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users outside China is not the primary design goal of the GFW, 11% of the poi-

soned responses arrive at our US machine after the legitimate ones. Nevertheless, the

remaining 89% of fake responses still hit our machine within 94ms ahead of the le-

gitimate ones. This result again highlights the importance of having a representative

dataset of forged IPs used by the GFW to effectively circumvent its DNS censorship.

Especially when fake responses arrive later, our dataset of forged IPs is necessary to

avoid misclassifying the legitimate ones arriving ahead as “poisoned”.

2.11.3 Analysis of True Resource Records

Now that we have successfully obtained the legitimate resource records of the

138.7K base censored domains and 41K innocuously blocked domains, we next an-

alyze them to better understand the impact of blocking these domains. As shown

in Table 2.13, 120K (86.8%) base censored domains have either an IPv4, IPv6, or

CNAME resource record. In other words, the remaining 18.7K (13.2%) of the base

censored domains that currently do not have any resource records, indicating their

inactivity. This is also one of the reasons why we observe a large number of domains

classified as “newly observed domain” and “not rated” categories in §2.8.2.

For the innocuously blocked domains, the actual impact of GFW’s overblocking

may not be as severe because only 25.6K (62.5%) of them have at least one resource

record. While the presence of resource records can be a sign of (in)activeness for a

given domain, it does not guarantee that a domain is actively hosting any contents or

services since a resource record can also be used for redirecting visitors to a domain-

parking site. Therefore, the total number of domains with resource records shown

in Table 2.13 should be viewed as an upper bound of the actual number of domains

that are actively hosting any content or service. As part of our future work, we plan

to visit all of these domains using their true resource records and further investigate

the contents hosted on them.
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Table 2.13. Breakdown of true resource records of base censored domains and
innocuously blocked domains.

Base censored domains Innocuously blocked domains
# of domains by
NS location

≥1 CN NS Non-CN NS ≥1 CN NS Non-CN NS
53.1K (38.3%) 85.6K (61.7%) 8.9K (21.6%) 32.1K (78.4%)

IPv4 29K (21.1%) 69.5K (50%) 6K (14.7%) 17.8K (43.5%)
IPv6 1.3K (1%) 28K (20.2%) 0.1K (0.3%) 2.8K (7%)

CNAMEs 31K (22.3%) 3.6K (2.6%) 2.9K (7.1%) 0.5K (1.3%)
# of domains
with RR(s) 120K (86.8%) 25.6K (62.5%)

Another focal point of Table 2.13 is the significantly high number of CNAME

resource records of both base censored domains and innocuously blocked domains that

have at least one authoritative name server located in China, compared to domains

whose authoritative name servers are located outside China. As far as we are aware,

this is because of a common workaround that is widely suggested and used by domain

owners who want to serve their websites to users at both sides of the GFW since these

CNAMEs are not filtered by the GFW.

2.12 Discussion

In this section, we discuss the limitations of our study and provide suggestions for

involving parties that are impacted by the GFW’s DNS censorship.

2.12.1 Limitations

In order to compare our analysis on the categories of censored domains with prior

studies, we choose to use a common classification service provided by FortiGuard [6].

However, we discovered that the GFW’s overblocking and geoblocking policy could

have already impacted this service (§2.10.2). Moreover, Vallina et al. [238] have shown

that different classification services could result in different views of the domains being

categorized. We thus tried to obtain additional classification services from two other

vendors, namely, McAfee and VirusTotal. However, we were told by McAfee [3]
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that they only provide the service for business customers, and VirusTotal [5] did not

respond to our requests.

Similar to other studies in remote censorship measurement [205, 230, 240], packets

sent from our measurement infrastructure may get blocked or discriminated by the

GFW. However, over the course of more than nine months operating GFWatch, we

did not experience any disruptions caused by such discriminative behaviors, as is evi-

dent by the consistency observed between the data collected by GFWatch and across

different network locations (§2.9.2). Moreover, as part of our outreach activities, we

have also received confirmations from local Chinese advocacy groups and owners of

censored domains detected by GFWatch when reaching out to these entities to share

our findings. Nonetheless, if our measurement machines ever gets blocked, we can

always dynamically change their network location.

Finally, we develop GFWatch as a measurement system to expose the GFW’s

blocking behavior based on DNS censorship. However, this is not the only filtering

technique used by the GFW; censorship can also happen at other layers of the network

stack, as previously studied [69, 88, 96, 114, 193, 253, 266]. Although prior works have

shown that some websites could be unblocked if the actual IP(s) of censored domains

can be obtained properly [62, 133], securing DNS resolutions alone may not be enough

in some cases because blocking can also happen at the application layer (e.g., SNI-

based blocking [62], keyword-based filtering [207]) or even at the IP layer [129, 132],

regardless of potential collateral damage [135].

Nonetheless, DNS is one of the most critical protocols on the Internet since almost

every online communication starts with a DNS lookup. We believe that continuously

monitoring the GFW’s filtering policy at this layer is necessary and important to

timely inform the public of the erratic changes in China’s information controls policies,

both from technical and political perspectives. §2.12.1 provides some examples of

domains censored due to political motivations.
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Politically Motivated Censorship

Internet censorship and large-scale network outages are often politically moti-

vated [116, 215]. From the censored domains discovered by GFWatch, we find nu-

merous governmental websites censored by the GFW, including many sites belonging

to the US government, such as share.america.gov, cecc.gov, and uscirf.gov.

During the nine-month measurement period, GFWatch has also spotted several

blockages that coincide with political events. For instance, soon after the clash be-

tween China and India due to the border dispute in Ladakh [227], on June 18th 2020

GFWatch detected the DNS filtering of several Indian news sites (e.g., thewire.in,

newsr.in). We reached out to the editor of the Wire India to report blockage against

their website by the GFW and were told that they were unaware of the blockage since

the site was still accessible from China earlier. Another instance is the blockage of

scratch.mit.edu that took place in August, 2020, due to some content deemed as

anti-China hosted on this website, affecting about three million Chinese users [204].

Although this event was reported by the GreatFire project [121] on the 20th and by

Chinese users on the 14th [204], GFWatch actually detected the first DNS poisoning

instance earlier on August 13th.

These cases highlight the importance of GFWatch’s ability to operate in an au-

tomated and continuous fashion to obtain a constantly updated view of the GFW to

timely inform the public about changes in its blocking policy.

2.12.2 Suggestions

GFW operators. Although the widespread impact of the GFW’s DNS filtering

policy is clear, as shown throughout this paper, we are not entirely certain whether

this censorship policy is intentional or accidental. While prior works have shown

intermittent failures of the GFW [96, 183], all geoblocking of China-based domains

and overblocking of innocuous domains discovered by GFWatch have lasted over
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several months. This relatively long enough period of time leads us to believe that

the GFW’s operators would have clearly known about the global impact of their DNS

filtering policy. By exposing these negative impacts on several parties outside China

to the public, we hope to send a meaningful message to the GFW’s operators so

that they can revise their DNS filtering policy to reduce its negative impacts beyond

China’s borders.

Public DNS resolvers. Poisoned DNS responses have widely polluted all popular

public DNS resolvers outside China due to the geoblocking and overblocking of many

domains based in China (§2.10). DNSSEC [92] has been introduced to assure the

integrity and authenticity of DNS responses for more than two decades to address

these problems. However, DNSSEC is not widely adopted because of compatibility

problems and technical complications [66, 75, 123]. To this end, public DNS resolvers

can use the strategy introduced in §2.11 to prevent poisoned DNS responses spoofed

by the GFW from tainting their cache. By waiting for all responses to arrive and

comparing the answers with the pool of forged IPs discovered by GFWatch (§2.9),

public DNS resolvers can filter out 99% of poisoned responses by the GFW. Note

that it is not always necessary to wait for all responses to arrive because the GFW

does not censor all domains. As we will make both censored domains and forged IPs

publicly available and update them on a daily basis, these datasets can be used to

decide whether to wait or not when resolving a given domain. This way, public DNS

resolvers would be able to prevent poisoned responses from polluting their cache,

assuring the quality of their DNS service while avoiding any downgrades of normal

performance when resolving domains that are not censored.

Owners of forged IPs. Legitimate owners of forged IPs may try to avoid hosting

critical services on these IPs as their resources may be saturated due to handling

unsolicited TCP and HTTP(s) requests, as shown in §2.10.1. Currently, we do not

find evidence that the GFW is using these forged IPs as a way to saturate computing
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resources of the infrastructure behind them since there are more than 1.7K forged

IPs in the pool (§2.9.1) and most of them are dynamically injected (§2.9.3). How-

ever, a previous report of the Great Cannon [173] has shown that China is willing

to weaponize the global Internet to mount resource exhaustion attacks on specific

targets. With DNS censorship, the GFW can adjust its injection pattern to concen-

trate on a handful of forged IPs, resulting in a large amount of requests towards these

targeted IPs and thus saturating their computing resources [71, 120, 143].

Domain owners. Using our dataset of censored domains, domain owners can check

whether their domain is censored or not, and censored due to intended blocking or

overblocking. Unless the GFW’s operators revise their blocking rules, future domain

owners should try to refrain from registering domains that end with any overblocking

patterns discovered in §2.8.1 to avoid them being inadvertently blocked by the GFW.

End users. Despite the large number of censored domains discovered by GFWatch,

different Internet users may be interested in different subsets of these censored do-

mains, but not all. As an immediate countermeasure to the GFW’s DNS censorship,

we will make the legitimate resource records of censored domains obtained in §2.11

publicly available on a daily basis. This way, impacted users can look up and store

legitimate resource records for particular censored domains in their system’s hosts

file to bypass the GFW’s DNS censorship. Alternatively, a censorship-circumvention

component of software can implement the hold-on strategy (§2.11) and gather records

based on the client’s location. In case the client cannot access the sanitized data pub-

lished by GFWatch, another client-side strategy is to send two back-to-back queries.

Depending on whether a censored domain belongs to the dynamic or static injec-

tion groups (§2.9.3), the client can discern which responses are legitimate. Since the

majority of censored domains are poisoned with dynamic IPs, the client can classify

the legitimate responses, which typically point to the same IP (due to back-to-back

queries) or the same AS. This way, the software only needs to know whether its
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intended domains are poisoned with static or dynamic IPs. To this end, continu-

ous access to GFWatch’s data is not necessary for this strategy to work, while fresh

records can still be obtained.

2.13 Conclusion

In this work, we develop GFWatch, a large-scale longitudinal measurement plat-

form, to provide a constantly updated view of the GFW’s DNS-based blocking be-

havior and its impact on the global Internet. Over a nine-month period, GFWatch

has tested 534M domains and discovered 311K censored domains.

We find that the GFW’s DNS censorship has a widespread negative impact on the

global Internet, especially the domain name ecosystem. GFWatch has detected more

than 77K censored domains whose poisoned resource records have polluted many

popular public DNS resolvers, including Google and Cloudflare. Based on insights

gained from the data collected by GFWatch, we then propose strategies to effectively

detect poisoned responses and evade the GFW’s DNS censorship.

As GFWatch continues to operate, our data will not only cast new light on tech-

nical observations, but also timely inform the public about changes in the GFW’s

blocking policy and assist other detection and circumvention efforts.
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CHAPTER 3

NETWORK INTERFERENCE - TRAFFIC
DIFFERENTIATION

3.1 Background

Net Neutrality is the notion that ISPs should treat all network traffic equally.

Traffic differentiation is an example of a net neutrality violation where certain classes

of Internet traffic are given better (or worse) performance. ISPs leverage various

techniques to manage their network traffic. One of these techniques is bandwidth

throttling which artificially limits the bandwidth that can be effectively used by a

subscriber or content providers. When this technique is used towards specific appli-

cations, it is often considered as a net neutrality violation. ISPs commonly enforce

traffic differentiation by deep packet inspection (DPI) middleboxes that are deployed

with the purpose of implementing network management tasks such as bandwidth

management, protecting users from malicious traffic, performance optimization, and

zero-rating.

A well-known technique to detect traffic differentiation is “Record and replay”

where network traffic generated by an application is recorded and later replayed be-

tween a device and a control server. A series of back-to-back replay pairs are run in

which the original replay exposes the original payload to the middleboxes that use

deep packet inspection. While the control replay contains the same traffic patterns

but the original payload is obscured to evade detection by DPI devices that often rely

on keyword matching in their classification.
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3.2 Related Work

Traffic differentiation detection Traffic differentiation has been the target

of study for over a decade. Originally, BitTorrent was studied by the Glasnost

project [85] which manually crafted measurements to simulate BitTorrent and BitTorrent-

like packet exchanges, followed by comparing the throughput distributions of ex-

changes with and without BitTorrent payloads. NetPolice [261] takes a different

approach: detecting differentiation in backbone ISPs by analyzing packet loss behav-

ior of several protocols (HTTP, BitTorrent, SMTP, etc.). Bonafide [39] is designed

to detect differentiation and traffic shaping in the mobile ecosystem, but still relies

on manually crafted files to specify protocols to test, supporting six application pro-

tocols. DiffProbe [147] focuses on Skype and Vonage, and detects differentiation by

comparing latency and packet loss between exposed and control traffic. The Pack-

sen [252] framework uses several statistical methods for detecting differentiation and

inferring shaper details. NANO [232] uses passive measurement from users to infer

the existence of traffic differentiation.

A limitation of prior work is that they did not generalize beyond a few tested ap-

plications, often used simulated traffic instead of traffic generated by real applications,

and did not work from mobile devices. However, recent work [163, 178] showed that

deployed differentiation policies often target specific applications based on keyword-

based deep packet inspection and thus are often not triggered by simulated traffic.

Chkdiff [210, 211] and Molavi Kakhki et al. [178] use application-generated traffic,

but are not evaluated at scale.

Identifying rate limiting Recent projects focus on identifying rate limiting of

Internet traffic via shaping and policing. The ShaperProbe [148] project detects

traffic shaping using end-to-end active probing with synthetic traffic, and it identified

suspected shaping in multiple ISPs; however, it is not deployable on mobile devices

and does not identify specific applications affected by shaping. Flach et al. [104]
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quantify traffic policing for YouTube and its impact on video-quality metrics, but this

analysis does not generalize to other video providers and requires access to a content

provider’s servers. Our approach identifies rate limiting for multiple applications

without requiring access to content providers’ servers.

3.3 A Large-Scale Analysis of Traffic Differentiation Prac-

tices

Net neutrality has driven public debate and discussion over the past decade. While

jurisdictions in the European Union have laws forbidding violations of net neutrality,

the US enacted similar policies in the middle of 2015 only to roll them back in June,

2018. Despite this interest in net neutrality, users, regulators, and legislators have

lacked easy-to-use tools to independently audit network providers, and there is no

recent study of the current state of net neutrality violations globally.

In this chapter, we use Wehe, an app developed based on a methodology we de-

signed before for detecting traffic differentiation over mobile networks, to conduct such

a global, independent audit of network policies impacting net neutrality. We conduct

a large-scale study of deployed differentiation policies using 1,045,413 measurements

conducted by 126,249 users across 2,735 ISPs and in 183 countries/regions. We iden-

tified differentiation in both cellular and WiFi networks, and analyzed 25 ISPs that

have differentiation policies deployed and the observed differentiation behaviors. We

also investigate the impact of throttling on video content providers and identify how

these policies lead to lower quality streaming despite sufficient resources available in

the network to improve it.
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3.4 Introduction

Net neutrality, or the notion that Internet service providers (ISPs) should give all

network traffic equal service1, has driven active discussions, laws [9], and policies [101].

However, to date there have been few empirical studies of ISPs’ traffic management

policies that violate net neutrality principles, or their impact on stakeholders such as

consumers, content providers, regulators, and legislators. In this work, we fill this gap

via a large-scale study of a common form of net neutrality violations: content-based

traffic differentiation that limits throughput for specific applications.

A large-scale study of net neutrality violations and their implications is long over-

due, given that the most recent large-scale audits of net neutrality came a decade ago

and focused on either backbone networks [261] or a single protocol (BitTorrent) [85].

In the intervening decade, the Internet has evolved in two key ways that require a

new approach to auditing. First, today’s dominant source of Internet traffic is video

streaming from content providers, not BitTorrent. Second, users increasingly access

the Internet from their mobile devices, often with a spectrum-constrained cellular

connection. There is a need to conduct a study of net neutrality violations that takes

these changes into account.

We address this need using 1,045,413 measurements conducted by 126,249 users

of our app, across 2,735 ISPs in 183 countries/ regions. From this set of raw mea-

surements, we identify 144 ISPs with sufficient tests to confidently identify differen-

tiation. Wehe builds on prior work for detecting traffic differentiation over mobile

networks [178], however, while prior work focused on detecting differentiation on a

per-device basis, we leverage our large-scale crowd-sourced data to develop more ro-

bust differentiation detection techniques. We then apply these techniques to conduct

the largest-scale study of content-based differentiation practices to date.

1With a notable exception being reasonable network management.
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The main contributions of this paper are the methods to detect throttling using

data from a large user base, analysis of this data, and findings related to detecting

fixed-rate throttling and their impact on affected apps . Beyond technical contri-

butions, our findings have been used by a European national telecom regulator, the

US FTC and FCC, US Senators, and numerous US state legislators. To complement

this study and to help consumers and regulators make more informed decisions, we

maintain a public website with updated analysis and data [13]. This website also

contains an extended version of this paper with appendices that provide additional

details of observed throttling. We now summarize our technical contributions.

Gathering a large dataset of content-based differentiation practices (§3.5)

We perform the largest data collection of content-based differentiation practices, com-

prising more than 1,000,000 tests, which we continue to maintain on an ongoing basis.

We adapted prior work [178] to enable such data collection at scale.

Method for reliably detecting fixed-rate throttling from crowdsourced mea-

surements (§3.6) Individual crowdsourced tests are subject to confounding fac-

tors such as transient periods of poor network performance. To address this, we de-

velop a method that reliably identifies fixed-rate throttling by leveraging tests from

multiple users in the same ISP. We combine Kolmogorov–Smirnov tests, kernel den-

sity estimators, and change point detection to identify cases of fixed-rate throttling

and delayed throttling. We evaluated the methodology (§3.7) with controlled lab

experiments from the 4 largest US cellular ISPs and found the results of using our

methodology on crowdsourced data are consistent with lab experiments.

Characterizing differentiation affecting Wehe tests (§3.8) We conduct a

multi-dimensional study of deployed differentiation policies measured by Wehe. We

find different network providers using different rate limits (e.g., 1.5 Mbps and 4 Mbps)

and targeting a different set of apps (e.g., YouTube vs. Netflix). We also find throt-

tling practices that are poorly disclosed, falsely denied (by one ISP), and that change

114



during the course of our study. Importantly, selective throttling policies potentially

give advantages to certain content providers but not others, with implications for fair

competition among content providers in throttled networks.

Characterizing video streaming implications of throttling (§3.9 ) We study

how throttling in the US impacts video streaming resolution. We study the video

resolutions selected by popular video streaming apps that are affected by throttling,

and find examples where throttling limits video quality. We also find many cases

where video players self-limit video resolution by default, in some cases selecting a

lower resolution than throttling allows. Finally, we observe that streaming sessions

experience retransmission rates up to 23%, leading to significant wasted network

bandwidth that can be addressed through more efficient throttling implementations.

3.5 Data Collection

We now describe the data collected by the Wehe apps (available from the Google

Play and iOS App Stores), which detect content-based differentiation between the

device and a server under our control. Wehe is available to download from the Google

Play and iOS App Stores.

3.5.1 Methodology

Record and replay To test for differentiation, Wehe uses the “record and replay”

technique introduced by Molavi Kakhki et al. [178]. We first record the network traffic

generated by an application (e.g., streaming a video using the YouTube app), and

include this traffic trace in the app. When a user runs a test, Wehe then replays

this traffic between the device and an Wehe server. We emphasize that our tests do

not contact content providers’ servers. Thus, all network traffic exchanged between

the Wehe app and server are identical to what was recorded, with the exception of

different IP addresses.
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Wehe runs a series of back-to-back replay pairs. In each back-to-back pair, the

original replay contains the same payloads as recorded (e.g., YouTube traffic). This

exposes the original payload to network devices such as those that use deep packet

inspection (DPI). The other replay in the back-to-back pair is the control replay, which

contains the same traffic patterns (packet sizes, timings) but the original payload is

obscured to evade detection by DPI devices that often rely on keyword matching in

their classification [163, 164]. For the control replay, Wehe inverts the original payload

bits, a technique that our prior work [164] found to evade DPI detection. Note that

we do not use random bytes because they were found to trigger differentiation in ways

that inverted bits do not [164].

Apps tested by Wehe For this study, Wehe uses traces recorded from YouTube,

Netflix, Amazon Prime Video, NBC Sports, Vimeo, Spotify, and Skype. We selected

the first five apps because video streaming is a common target of traffic differentia-

tion [146, 163]. We include Spotify because some cellular plans indicate rate limits

on streaming audio, and Skype because a telephony app may compete with cellular

providers’ voice services. The traces in Wehe consist of video streaming from the

video apps, music streaming on Spotify, and a video call on Skype. Note that the

traces are recorded by the Wehe team, and contain no information about the users

running the tests. We use the following symbols to represent each app test: for

YouTube, for Netflix, for Amazon Prime Video, for NBCSports, for Skype,

for Spotify and for Vimeo.

When running Wehe, users can select which apps to test, and a test consists of

up to two replay pairs. The Skype test uses UDP, while the others use TCP. Among

TCP tests, NBCSports and Spotify use HTTP, and the others use HTTPS. Thus our

approach supports both plaintext and encrypted flows. For the tests that use HTTPS,

we simply replay the exact same encrypted bytes over TCP connections between the

Wehe app and a Wehe server. Note that since Wehe simply replays the trace as it
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was recorded, Wehe does not incorporate any dynamic behavior (e.g., adaptive bitrate

streaming) that the recorded app might incorporate.

We support UDP traffic in our tests, but do not currently use QUIC traces. An

open important research challenge is how to emulate QUIC congestion control, given

that we cannot trivially distinguish new payload bytes from retransmissions due to

header encryption.

Detecting differentiation for each test After replaying traces for an app, Wehe

checks for differentiation and displays the result to the user. Wehe uses a Kolmogorov–

Smirnov (KS) test [145] to compare the throughput distributions of the original and

the control replays of a given application trace. Wehe samples throughput using

fixed time intervals, based on the recorded trace duration: if the replay takes C sec-

onds when recorded, each interval is C/100 seconds. Because our record and replay

approach sends data no faster than it was recorded, we are guaranteed to have at

least 100 samples for each test. However, if the test occurs in an environment where

there is a bandwidth bottleneck, the replay can take more than C seconds. If so, we

continue to sample at the same rate after C seconds, and thus would record more than

100 samples. Similar to Net Police [261], Wehe conducts Jackknife non-parametric

resampling to test the validity of the KS statistic. Wehe indicates to the user that

there is differentiation only if both the KS test is statistically significant (i.e., ?-value

less than 0.05, and the resampled KS tests lead to the same result 95% of the time)

and the difference in average throughputs is significant (i.e., at least a 10% difference

in average throughput) [178].

3.5.2 Implementation

Prior work detected differentiation using packet captures recorded at the replay

server [178], assuming that packets received at the server (e.g., TCP ACK packets)

came directly from the client. However, we found empirically that this is not the case,
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largely due to transparent TCP proxies that split the end-to-end connection into two

TCP connections. In this case, the server cannot observe rate limits imposed only

on the client–proxy connection. To address this, Wehe records traces both from the

server side and from the client via periodic throughput measurements collected at

the application layer (obtaining raw packet traces would require users to root their

phones, which we wish to avoid). We use both traces to identify differentiation and

the direction that is affected.

Prior work found that three back-to-back tests yielded low false positive and neg-

ative rates for differentiation detection [178]. However, anecdotal reports from Wehe

users indicated that the time required to run these tests (16 minutes to test all apps)

was a limiting factor in using Wehe. To mitigate this issue, Wehe first analyzes the

result of one pair of back-to-back tests for an app. If there is no differentiation de-

tected, then Wehe does not run additional tests for the app. If there is differentiation

detected, Wehe runs an additional pair of back-to-back tests and reports differentia-

tion to the user only if it is detected in both tests. The use of only one or two tests

might cause higher error rates in results reported to individual app users. In §3.6 we

analyze data from all tests of the same app in the same ISP across our user base to

gain additional statistical confidence in our results.

3.5.3 Confounding factors and limitations

Wehe accounts for the following confounding factors when reporting results to

users. First, bandwidth volatility (e.g., due to poor signal strength, cross traffic, etc.)

could cause Wehe to incorrectly identify differentiation. To reduce the impact of this,

Wehe performs multiple back-to-back tests and reports differentiation to users only

when at least two pairs of tests indicate differentiation. This conservative approach

may result in false negatives, where Wehe does not report differentiation to the user.
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In the next section, we discuss how we aggregate data across our user base to mitigate

false negatives and positives due to volatility.

Second, the network may retain history such that one replay test impacts the

treatment of the next replay. We instituted random ordering of original and bit-

inverted replays, and found no evidence of history affecting our results.

Third, Wehe is subject to the same limitations prior work [178]: it cannot detect

differentiation based on IP addresses, peering arrangements, interconnection conges-

tion, traffic volume, or other factors independent of IP payloads. Detecting differen-

tiation based on IP addresses, peering arrangements, and interconnection congestion

would seem to require access to content servers (and/ or their IPs)—Wehe alone

cannot detect such cases because the paths our measurements follow are potentially

different than the ones between clients and content servers.

Though outside the scope of this work, Wehe can be augmented to detect dif-

ferentiation based on traffic volumes. Specifically, our tests preserve the recorded

application’s content stream in terms of packet timings and packet sizes, and could

trigger differentiation based on those properties. However, both the inverted and

original payloads could trigger the same behavior, so we would need to add a second

control test (that does not look like any app’s traffic volumes) to identify differen-

tiation. Similarly, Wehe could incorporate tests using the real apps under test, in

addition to our controlled ones using Wehe, to detect differentiation based on factors

other than payload contents. We consider such approaches to be interesting areas for

future work.

Last, there is no known API to determine a user’s data plan or any differentiation

policies on the plan, so we cannot compare Wehe findings with stated policies.
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3.5.4 Ethics

Our work involves human subjects, and we took care to follow community best

practices when conducting our work. Wehe collects anonymized data from user de-

vices as part of an IRB-approved study. First, as described below, we collect only

data that we deemed necessary to characterize differentiation and assess confounding

factors. Second, when Wehe is opened by the user for the first time—and before any

data is collected—users undergo informed consent via an IRB-approved consent form

that specifies the data collected and how it is used. Once users consent, they can

initiate tests; if the user does not consent, the app closes immediately. Third, data

collection occurs only when users initiate tests, and users can opt out of data collec-

tion (and request deletion of data) at any time. Our data-collection and management

process has been deemed GDPR-compliant.

3.5.5 Dataset

The data generated by Wehe tests includes throughput samples, as well as the

following for each back-to-back test: (1) the server timestamp at the beginning of

the test, (2) the first three octets (/24) of the client’s IP address, (3) the client’s

mobile carrier as reported by the operating system, (4) the client’s operating system

and phone model, (5) the network connection type (WiFi or cellular), and (6) the

coarse-grained GPS location (collected with user permission). We describe the reason

for collecting each of these items below.

The timestamp allows us to identify trends over time. The carrier name allows us

to identify the cellular provider for tests on cellular networks. The client’s anonymized

IP address information and network type allow us to identify the ISP being tested

for WiFi connections2, and to identify whether there are subnet-level differences in

detected differentiation.

2Using the “OrgName” field from whois queries to regional Internet registries.
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The coarse-grained GPS location (10 km precision) allows us to identify regional

differences in ISPs’ policies (e.g., in response to state-level net neutrality regulations

in the US). The Wehe app first requests the geolocation of the user via the operating

system’s precise GPS location feature, the Wehe server then geo-codes the geolocation

(i.e., looking up the city/state/country) and stores only the truncated geolocation

(i.e., with 10 km precision). Users can choose not to share their GPS locations without

limiting app functionality. In 15% of tests, the users opted out of location sharing.

The OS and phone model allow us to distinguish whether ISPs discriminate against

these factors, or to what extent OSes and phone models might bias the results.

Summary of dataset We summarize our dataset in Table 3.1. Between Jan. 18,

2018 and Jan. 24, 2019, 59,326 iOS users and 66,923 Android users installed Wehe

and ran at least one test.

In total, Wehe conducted 1,045,413 tests. We plot the distribution of tests over

time in Figure 3.2 (note the log scale on the H-axis). We observe a peak of 77,000

tests on January 19, 2018, when a news article raised awareness of the app [12].

There were three other press events that raised awareness of the app; we still observe

several hundred tests per day. Wehe users come from at least 183 countries based on

geolocation.

Like any crowdsourced dataset, ours is subject to several biases that may impact

the generality of our findings. We cannot control when, where, or why users run our

tests, and thus we do not have uniform or complete coverage of any ISP or app tested.

Figure 3.1 shows the distribution of test locations, where the intensity of the color for

each country reflects the number of tests completed in the country. More than 60%

of our tests come from the US, most likely due to the recent changes in net neutrality

rules combined with US-centric press articles. The phone models used in our tests

skew toward higher-end devices, Table 3.2 shows the top phone models and OSes for
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Table 3.1. Overview of Wehe data analyzed in this paper.

Replay Users (%) Cellular Tests WiFi Tests
YouTube 106,813 (85%) 97,009 149,850
Netflix 83,369 (66%) 66,320 112,473
Amazon 77,212 (61%) 61,851 102,529
Spotify 65,644 (52%) 43,306 90,963
Skype 60,658 (48%) 37,589 72,250
Vimeo 49,701 (39%) 33,538 67,333

NBC Sports 49,605 (39%) 38,701 71,701
Total 126,249 378,314 667,099

Table 3.2. Summary of Wehe users’ phone models. There is a bias toward newer
phones and OSes, with devices capable of displaying content in HD.

iOS Android
Users 59,326 66,923

Top five OS versions

iOS 11.2.2 15% Android 7.0 17%
iOS 11.2.5 7% Android 8.0.0 9%
iOS 12.1 5% Android 8.1.0 . 8%
iOS 11.4.1 4% Android 7.1.1 5%
iOS 11.2.6 3% Android 6.0.1 4%

Top five phone models

iPhone X 19% Pixel 2 XL 2.2%
iPhone 7 14% Samsung S8 1.9%
iPhone 6s 12% Pixel XL 1.8%
iPhone 7 Plus 11% Samsung S8+ 1.8%
iPhone 6 7% Pixel 1.7%

users in the Wehe dataset. A large fraction of our US tests come from large cellular

providers, meaning lower-cost providers (e.g., MVNOs) are under-represented.

Despite these biases, our analysis covers 2,735 ISPs3 in 183 countries, and identifies

differentiation in 30 ISPs in 7 countries. We believe this to be the largest study of

content-based differentiation practices.

3.6 Detecting Differentiation

We now describe our methodology for identifying and characterizing differentiation

using aggregate data collected from multiple users and tests. Specifically, we focus

on how we detect fixed-rate bandwidth limits, which we refer to as throttling. This is

by far the most common type of differentiation that we observed, and the rest of the

paper focuses exclusively on fixed-rate throttling.

3We noticed that some ISPs used multiple “OrgNames” (e.g., Bouygues and BouyguesTelecom);
thus, some ISPs may be counted multiple times.
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Figure 3.1. Number of tests per country (log scale). Note that 15% of our tests
do not have GPS data (e.g., if the user did not provide permission to collect GPS
locations), and we excluded them from any geolocation-based analysis.

Our approach relies on the following steps. Similar to prior work, we use the

KS test statistic to detect differentiation by comparing throughput distributions for

a collection of original replays to those from control replays [178] (§3.6.1) . For

replays where differentiation is detected, we detect one or more throttling rates using

kernel density estimation (KDE), under the assumption that throughput samples

from clients throttled at the same rate will cluster around this value (§3.6.2).

Using this approach to detect throttling rates works well if an entire replay is

throttled; however, we find in practice that certain devices enforce fixed-rate throttling

only after a burst of packets pass unthrottled, as previously reported by Flach et

al [104]. We use change point detection on throughput timeseries data to identify

delayed throttling periods (e.g., if they are based on time or number of bytes) and

omit unthrottled samples when determining the throttling rate (§3.6.3).
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Figure 3.2. Number of Wehe tests per day (log scale).

Figure 3.3. Identification of throttling rate. The G-axis is the average throughput,
and the H-axes are a histogram of tests (bars) and probability density function (PDF,
gray curve) of average throughputs for all YouTube original replays (left) and all
YouTube bit-inverted replays (right) from all tests in Sprint network. The horizontal
line is the density threshold for detecting potential throttling rates, with green dots
are the values above the threshold. We remove values that appear in both original
and bit-inverted, leaving 2.0 Mbps as the detected throttling rate.

3.6.1 Identifying differentiation

When identifying differentiation using crowdsourced data, we group tests accord-

ing to the ISP and the app being tested (e.g., YouTube, Netflix, etc.), which we

refer to as an ISP-app pair. We use all tests for a given ISP-app pair, where each

test consists of one original replay and one bit-inverted replay regardless of whether

throttling was detected individually. We focus on ISPs with enough tests to apply

the detection methodology; namely, we conservatively require 100 total tests or 10

tests where Wehe identified differentiation.4 In total, 144 ISPs meet the criteria.

4These threshold were picked because they avoided false positives for detecting differentiation.
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Our null hypothesis is that there is no differentiation for an ISP–app pair. If this is

the case, the distribution of throughput samples observed for original and bit-inverted

replays should be similar. To test this, we form two distributions: $ is the collection

of all throughput samples for all original replays for the ISP-app pair and � is the

collection of all throughput samples for all bit-inverted replays for the ISP-app pair.

Note that the number of samples in $ and � are identical by construction (we include

only complete pairs of back-to-back replays).

We then test whether $ and � are drawn from different distributions by using

the Jackknife re-sampling KS Test described earlier. Specifically, we reject the null

hypothesis if the KS-Test indicates different distributions with a ?-value is 0.05 or

less, and the random subsamples of the distribution yield the same result 95% or

more of the time.

By aggregating large numbers of tests, we can mitigate the impact of confounding

factors such as (random) network dynamics, which should affect both distributions

roughly equally given the large number of samples we examine. If we detect differen-

tiation for an ISP-app pair, we next determine whether there is fixed-rate throttling

for the pair.

3.6.2 Inferring throttling rates

The technique we use to detect fixed-rate throttling for an ISP–app pair is based

on the hypothesis that when an ISP deploys content-specific fixed-rate throttling,

this policy affects multiple users (e.g., those with the same data plan). If this occurs,

we expect that multiple tests would be throttled in the same way, and thus the

distribution of average throughputs for these tests would be centered at the throttling

rate instead of being randomly distributed across the range of available bandwidth

for a network.
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To detect when average throughputs group around a given rate, we use kernel

density estimation (KDE), which estimates the probability density function (PDF) of

random variables (in our case, throughput). The intuition behind using KDE is that

if the random variable (throughput) contains many samples at or near a certain value,

the value should have a probability density that is relatively large. Thus, fixed-rate

throttling should lead to relatively large probability densities at or near the throttling

rate when using KDE. Note that KDE analysis may yield a PDF that has multiple

local maxima, meaning the approach can be used to detect multiple throttling rates

(or access technology limits).

There are two key challenges for using KDE effectively to identify fixed-rate throt-

tling. First, we must determine what thresholds to use for identifying local maxima

in the PDF that correspond to fixed-rate throttling. Second, we must eliminate con-

founding factors such as rate limits that are not based on the content of network

traffic.

Setting thresholds for detection For the first challenge, we use the following

heuristic. We assume that at least some fraction 5 of the total throughput averages, =,

for an ISP-app pair are at the throttling rate, and 5 represents our detection threshold

(i.e., we can detect fixed rate throttling affecting at least 5 ∗ = tests). We then use an

approximation that the remaining (i.e., unthrottled) samples are randomly distributed

across the available bandwidth for the ISP.5 Finally, we generate data according to

this model, run KDE (using a Gaussian kernel with a bandwidth of 0.1), determine

the density for the 5 throttled samples and use that as our detection threshold C.

More specifically, for each ISP–app pair we find the number of replays = and

the average throughput range [G, H]. We then construct a distribution consisting of

(1− 5 ) * = data points with values uniformly distributed between G and H, and 5 * =

5This is not true in practice, but serves as a useful first-order approximation to identify through-
put values of interest.
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data points with the value (H − G)/2. We run KDE on this distribution, and set our

detection threshold C to the density value at (H − G)/2 (containing a fraction 5 of the

values). We evaluated the methodology with 5=0.02 in §3.7, and we found no false

positives or negatives.

Eliminating confounding factors The heuristic above identifies characteristic

throughput values containing more samples than would be expected from a uniformly

random distribution; however, not all such values are due to fixed-rate throttling. For

example, an ISP may impose rate limits on all traffic for a device (e.g., due to usage or

access-technology limits). Importantly, such behavior should impact both the original

replays and the bit-inverted replays.

To eliminate such cases, we first remove from consideration any average through-

put values that have high density in both the original and bit-inverted distributions.

Next, we include only throughput values with high density and that correspond to

throttling rates observed by Wehe tests that indicated differentiation to the user. For

this, we run the same KDE analysis described above, but only on tests where the

Wehe app identified differentiation.

As an example of this approach, the left plot in Figure 3.3 shows a histogram

of average throughput values for all YouTube original replays over Sprint, and the

estimated PDF (grey curve) from running KDE. The horizontal line indicates our

detection threshold, C, which identifies high-density values near 2 Mbps and 10 Mbps.

The right figure plots the same, but for the bit-inverted replays ; note that both

original and bit-inverted distributions have above-threshold density values at 10 Mbps,

indicating that this throughput value is not due to content-based differentiation.

Finally, we confirm that tests where the Wehe app indicated differentiation exhibited

throttling at 2 Mbps using KDE analysis, and conclude that 2 Mbps is the throttling

rate for this ISP-app pair.
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Figure 3.4. Throughput over time for a Netflix test over T-Mobile, showing delayed
throttling. Note that the first few seconds of the transfer include rates up to 20 Mbps,
after which they drop to 1.5 Mbps (horizontal line).

3.6.3 Accounting for delayed throttling

The methods described so far in this section assume that if fixed-rate throttling

occurs, it affects the entirety of a Wehe test experiencing throttling. In the case of T-

Mobile, we found empirically that this assumption was violated because they engage

in delayed throttling, previously reported by Flach et al. [104]. Figure 3.4 shows a

timeseries of throughput for a Netflix replay that is subject to this policy: initially the

transfer achieves throughput up to 20 Mbps; afterward, the transfer drop to 1.5 Mbps

(horizontal line).

Previous work found that delayed throttling was implemented by limiting the

number of bytes that are unthrottled, and identified the behavior using the number

of bytes that are transferred before the first packet is dropped [104]. In our work,

we seek to avoid assumptions about whether such delayed throttling is based on

bytes or time, and to use techniques that are insensitive to packet drops caused by

reasons other than delayed throttling. Instead, we assume that a detectable delayed

throttling session will have at least one phase change, and that all tests for an ISP-

app pair affected by delayed throttling will experience the same delay (i.e., number

of seconds or bytes). Thus, to detect delayed throttling for an ISP-app pair, we use
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change point detection (to identify the phase change) and KDE to identify whether

the change occurs after a number of seconds or bytes.

Our null hypothesis is that there is no delayed throttling. If this were true, a phase

change could be caused by reasons such as bandwidth volatility, and we would expect

that the delay would be randomly distributed. To test this hypothesis, we investigate

only tests for an ISP-app pair with exactly one phase change, and determine the

distribution of delays.

To detect phase changes, we use the PELT algorithm [153] and filter out any tests

that do not have exactly one change point. We tuned the detection algorithm so that

it would detect change points from tests where we replayed Netflix on T-Mobile’s

network using our lab devices. To determine whether the change point indicates

statistically significant throughput on either side of the boundary, we use a KS test

to compare the distributions of throughput before and after the change point. If they

are different, we add the change point time and bytes to the list of change points for

the ISP-app pair.

After gathering lists of change points, we use KDE6 to determine whether the

change points for the ISP-app pair are randomly distributed or instead cluster to-

gether around a time or number of bytes. If there is a relatively large density value

at a given number of bytes or time, then we reject the null hypothesis and flag the

ISP-app pair as experiencing delayed throttling, according to bytes or time, whichever

has the largest density value. As an example, Figure 3.5 shows the distribution and

estimated PDF of delayed throttling bytes for Netflix on T-Mobile, where most of the

change points are detected around 7 MB.7

If delayed throttling is detected, we filter out throughput samples during the delay

and detect the throttling rate as described in the previous section.

6With an empirically derived threshold density of 0.1.

7The change point times have substantially lower density.

129



Figure 3.5. Detecting delayed throttling bytes for Netflix in T-Mobile. For each
change point (in bytes) on the G-axis, the figure shows a histogram and estimated
PDF generated from KDE. The green dot (at 7 MB) indicates the detected number
bytes before throttling begins.

3.6.4 Limitations and Caveats

The methodology for detecting fixed-rate throttling presented in this paper is

subject to the following limitations.

Record/replay limitations The recorded traffic that we use for an app in Wehe’s

replay tests may not always match the traffic generated by the app. For example,

if a video provider switches from HTTP to HTTPS, our tests would be out of date

until we create a new recording. Likewise, a throttling device may update its rules

for detecting traffic before we deploy a new recording, and this could lead to false

negatives. We periodically check for changes to apps that we test in Wehe, e.g., we

updated our recordings in mid-January, 2019 after Amazon Prime Video changed

from using HTTPS to HTTP.

Detection limits We can find evidence of fixed-rate throttling only when we have

sufficient tests (and a sufficient fraction of tests being throttled to the same rate) from

an ISP to obtain statistical significance. We detected differentiation for 39 ISPs, but

we see no evidence of fixed-rate throttling for 9 of them. Specifically, for these 9 cases

we found differences between original and bit-inverted average throughputs, but we

did not detect fixed-rate throttling after running KDE. We do not know the root

causes for these cases.
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3.7 Evaluation of Detection Method

We now evaluate our detection method using controlled experiments from the

four largest US cellular providers. Ideally, we would compare our detection results

with ground-truth information from each ISP in our study, but gaining access to each

network in our crowdsourced data would be infeasible. Further, even if we had this

information, we could not control for confounding factors such as varying network

conditions, the user’s data plan or usage history.

Instead, we validate that our detection methodology produces findings that are

consistent with controlled experiments performed in our lab. For the largest four US

carriers, we do find consistent results—our lab tests indicate content-based differenti-

ation and fixed-rate throttling that matches results produced by our analysis of data

from Wehe users.

3.7.1 Lab experiment setup

We purchased SIM cards from AT&T, Sprint, T-Mobile and Verizon. We inten-

tionally purchased prepaid plans that mention indicators of throttling practices, such

as “video streaming at 480p” or “video optimized streaming.” Note that none of the

disclosures indicated which video providers are targeted for throttling, nor how the

targeting is done. We conducted lab experiments in Jan. 2018, May 2018 and Jan.

2019 for AT&T, T-Mobile and Verizon, and the tests for Sprint only in January, 2019

due to difficulty acquiring a prepaid SIM.

For each experiment, we ran each of the 7 Wehe tests on each SIM card 10 times.

We include two sets of tests for Vimeo (with two different domains) and Amazon

Prime Video (one using HTTPS and one using HTTP) in Jan. 2019 to reflect the

change in how the service delivered video that month.

Since the data plan disclosures did not indicate which video services were throttled,

we do not have ground truth for which Wehe tests should be affected. Instead, our
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Table 3.3. Comparison of crowdsourced and lab results on four US mobile carriers
in Jan. 2018, May 2018, and Jan. 2019. There is an additional column (’) for new
Amazon and Vimeo traces recorded in Jan. 2019. A shaded box indicate throttling
was detected using crowdsourced data; otherwise throttling was not detected. A X
indicates that result from crowdsourced data matched the lab experiment results, and
“-” means we do not have a lab experiment.

01/18 05/18 01/19 01/18 05/18 01/19 01/18 05/18 01/19 01/19′ 01/18 05/18 01/19
AT&T X X X X X X X X X X X X X
Verizon X X X X X X X X X X X X X

T-Mobile X X X X X X X X X X X X X
Sprint - X X - - X - - X X - - X

01/18 05/18 01/19 01/18 05/18 01/19 01/18 05/18 01/19 01/19′

AT&T X X X X X X X X X X
Verizon X X X X X X X X X X

T-Mobile X X X X X X X X X X
Sprint - - X - - X - - X X

hypothesis is that if our lab tests are affected by content-based differentiation, then we

should be able to detect exactly which content triggers throttling. We use the “binary

randomization” method [163] for identifying content that triggers DPI classification

rules used in throttling deployments.

3.7.2 Comparison with Wehe data

To compare the lab findings with crowdsourced Wehe data, we build subsets of

Wehe data, one each from Jan., 2018 and May 2018, and two from Jan. 2019 to

reflect updated recordings released that month. We then use the methodology from

the previous section to detect fixed rate-throttling and compare our findings with

those from lab experiments.

Table 3.3 presents a summary of findings, showing that our lab tests and crowd-

sourced data are consistent. There are at least three columns for each ISP-app pair,

representing tests from Jan., 2018, May 2018 and Jan., 2019. There is an additional

column for Amazon and Vimeo where we separate out the tests based on whether

they were done using older (the third column) or newer traces (the fourth column).

A shaded cell indicates that our method detected differentiation using crowdsourced

tests for that ISP-app pair from that specific month, while a white cell means that

we did not. A Xshows that the result from Wehe data matches the lab experiment
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for an ISP-app pair during that month, and a “-” indicates cases where we have no

lab experiments (January/May 2018 for Sprint).

Table 3.3 shows that all cases of throttling in lab experiments were also detected

in Wehe tests. We could not verify consistency for all Wehe crowdsourced findings;

namely, our tests indicate throttling of Skype video in the first nine months of 2018,

but we did not have a Sprint SIM for lab tests then.

3.8 Characterizing differentiation

We now present our findings from all Wehe tests in our dataset. In this section,

we focus on cases where throttling is detected for at least one ISP-app pair. Table 3.4

summarizes the results. While the majority of tests come from WiFi networks, the

majority of detected differentiation occurs in cellular networks. We discuss our find-

ings in more detail below.

3.8.1 Identified differentiation

We identified 30 ISPs in 7 countries that throttle at least one Wehe test. Nearly

all cases of detected throttling affect video streaming services, with YouTube being

throttled the most often (25 cases), and Vimeo being throttled the least (3 cases).

Our methodology did not detect any ISP throttling of Spotify tests in our data,

and detected throttling of Skype video tests only in Sprint (§3.8.3), Boost Mobile

(which is owned by Sprint), and the United Arab Emirates (UAE) on both WiFi

and cellular connection. In the UAE, the “throttling” is to zero (i.e., Skype tests

are blocked), reportedly because Skype provides an unlicensed VoIP service in the

country.

The most common detected throttling rate is 1.5 Mbps (12 cases). These rates

typically correspond to ISPs that disclose data plans offering low-resolution video

streaming, a topic we investigate in §3.9. Besides blocking, the lowest throttling rate
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detected is 0.5 Mbps from Boost Mobile, and the highest detected throttling rate is

6 Mbps from Start Communications, a regional ISP based in Ontario, Canada.

Throttling via WiFi In the vast majority of ISPs tested via WiFi, our method-

ology did not detect throttling. The exceptions were the UAE blocking Skype (1

instance), and five other providers in North America. At least three of these five

(Viasat, Hughes and NextLink) are satellite providers, and are likely more band-

width constrained. While we cannot confirm the type of network for VianetTV and

Start Communications, Vianet’s website indicates that they offer residential plans

that carry Internet traffic over cellular connections. Thus, the majority of detected

throttling over WiFi occurred in networks that carry traffic over long-range wireless

networks.

Throttling over cellular connections Most cellular throttling comes from

providers in the US. We detected differentiation in nearly every major US cellular

ISP, and we found all these throttling practices started before June 2018 (i.e., when

the FCC rolled back restrictions on throttling [10]). While the number of detected

cases in the US might be due to the bias in our dataset, it is in part due to the

regulatory regime. For example, we do not detect throttling from cellular ISPs in

France, where we have a large sample size, and where the practice is illegal. One

notable exception is Google Fi, which did not throttle any of our tests.

3.8.2 Variations in detected throttling

Not all tests for each ISP-app pair in Table 3.4 are throttled. We now investigate

several potential root causes for the behavior.

Policy changes over time One explanation for non-uniform throttling of Wehe

tests is that throttling policies changed for ISP-app pairs during our study. We test

this by comparing the detected throttling rates and fraction of throttled tests over

time. The number of tests per ISP-app pair varies considerably over time, so we use
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Table 3.4. ISPs where we detect differentiation, the throttling rates, apps affected,
and the number of Wehe tests in the ISP.

Country ISP Throttled Apps Rate(s) Tests

WiFi network
Canada Start Comms. , 6 Mbps 126
Canada ViaNetTV , 1 Mbps 45
UAE Etisalat 0 Mbps 23
US Hughes Net. Sys. , 1 Mbps 81
US NextLink , , , , 4 Mbps 72
US ViaSat , 1 Mbps 112

Cellular network
Canada Rogers , 1.5 Mbps 4479
Canada SaskTel 1.5/3 Mbps 61
Chile Entel 1.5 Mbps 30
Germany Telekom DE , 1.5 Mbps 178
Israel HOTmobile 1.5 Mbps 23
UAE Etisalat 0 Mbps 73
UAE du 0 Mbps 44
US AT&T , , 1.5 Mbps 46,013
US BoostMobile , , , 0.5/2 Mbps 792
US Cellcom , , 4 Mbps 97
US Cricket , 1.5 Mbps 1,224
US CSpire , 1 Mbps 41
US FamilyMobile , , , 1.5 Mbps 106
US GCI , , , , 1/2 Mbps 153
US Iowa/iWireless , , , 1.5/3 Mbps 76
US MetroPCS , , , 1.5 Mbps 2,135
US Sprint , , , 2 Mbps 35,295

US T-Mobile , , , ,
1.5 Mbps

39,820
(delayed)

US Tracfone Wireless , 2 Mbps 410
US Verizon , , 2/4 Mbps 69,016
US Visible , 2 Mbps 52
US XfinityMobile , , 2 Mbps 131
UK giffgaff , 1 Mbps 58
UK O2 , 1.5 Mbps 210

the following approach to test sample sizes with sufficient power to draw conclusions

about policy changes. For each ISP-app pair, we divide tests into periods, each with

a minimum of 100 total tests and 10 throttled tests. If the same rate(s) and a similar

fraction of throttled tests are observed in all periods, we conclude there is no policy

change over time. We consider only two periods that meet this criteria: periods of

one month, or periods of 6 months. The latter divides data into periods before and

after the US rolled back net neutrality protections in June, 2018.

The monthly analysis covers AT&T, Sprint, T-Mobile, Verizon, and MetroPCS,

and the biannual analysis covers BoostMobile, cricket, O2, and Tracfone Wireless.

For the vast majority of cases, we see the same throttling rate and similar fractions of

throttled tests during the study period, indicating that most policies are stable over
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the course of one year, and that the throttling policies were in place even before new

FCC rules permitted them in June, 2018.

For T-Mobile, we detected that Vimeo tests are throttled only after Nov., 2018,

and a small fraction of YouTube tests were throttled at 2 Mbps (instead of 1. 5 Mbps)

only in Jan. 2019. For Sprint, we found that Skype video tests ceased to be throttled

after Oct., 2018. We detected no changes in other policies.

Time-of-day We now investigate the role time-of-day plays in throttling, in light

of claims that throttling is necessary to prevent overloading the network during times

of heavy usage [14]. If this were true, we expect to see higher incidence of throttling

during a cellular network’s busy hours (e.g., 8am to midnight) compared to overnight

(e.g., midnight to 8am). We test the hypothesis by grouping tests into day and night

using busy hours identified in prior work [244], and checking whether the fractions of

the throttled tests are different (e.g., more tests are being throttled during the day).

Specifically, for each ISP-app pair we denote the fraction of throttled tests as 5 ,

number of total daytime tests � (3 of which are throttled), and # total nighttime

tests (= of which are throttled). If there is no time-of-day effect, the number of

throttled tests should be � * 5 during the day and # * 5 during the night. We run

a chi-squared test comparing the actual number of throttled tests (= and 3) with the

expected number of throttled tests (�* 5 and #* 5 ); if the ?-value is less than 0.05,

we conclude there is a time-of-day effect.

Out of the 77 ISP-app pairs we detected throttling, 71 of them include tests both

during the day and night; of these we find no evidence of time-of-day effect for 60

cases. Of the remaining 11, four have fewer than 30 tests and thus limited statistical

power, and we manually investigated the remaining 7 ISP-app pairs. For these cases,

we found the opposite result as our hypothesis: the fraction of tests throttled

during busy periods decreased compared to non-busy periods. This could be due

to a different set of users with different throttling policies, or it could be due to a
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lack of sufficient available bandwidth to detect throttling. Our data supports the

latter explanation, because during busy hours we see a larger fraction of original and

bit-inverted tests with throughput lower than the throttling rate.

Geographical differences We investigated whether there are geographic differ-

ences in throttling practices, e.g., one region is affected more than another. This could

be due to factors such as state-level net neutrality laws or a regional deployment of

throttling (e.g., affecting a subset of a provider’s packet gateways). We focus on the

US-based ISPs (where we have the most samples), and conduct a state-level regional

analysis. Our finding is that there are differences in throttling experienced by Wehe

users in each state, but these variations are not persistent and are consistent with

random noise.

Mobile OSes We consider whether the mobile OS plays a role in whether a given

client will be throttled or not. We analyzed the fraction of tests for an ISP-app

pair affected by differentiation for iOS and Android, and found that the top four US

cellular providers have similar throttling rates for both mobile OSes.

IP prefixes We next consider whether throttling affects only certain IP prefixes

assigned to clients. We first grouped the tests according to the routable IP prefix that

the client’s IP address belongs to, then determined the fraction of throttled tests for

each prefix. If differentiation is implemented on a per-prefix basis we would expect

a bimodal trend with prefixes having either no cases of throttling, or nearly all tests

experiencing throttling. However, this is not what we observe.

For each ISP-app pair, we calculated the fractions of throttled tests for each IP

prefix, and then checked the standard deviation of the fractions, if the distribution is

bimodal,we would expect a high standard deviation. In more than 87% of the cases,

we observe a standard deviation of less than 0.2; we manually checked the remaining

cases and did not see a bimodal trend.
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(a) YouTube tests on
AT&T (all data)

(b) YouTube tests on
Verizon (all data)

(c) YouTube tests on
Sprint (January 2018)

(d) Skype tests on
Sprint (January 2018)

Figure 3.6. CDF of average throughputs from YouTube ((a)–(c)) and Skype (d)
tests. For AT&T, the detected throttling rate is 1.5 Mbps in 3.6(a), for Verizon there
are two detected rates (2 Mbps and 4 Mbps) in 3.6(b). In Sprint, we detect throttling
of a small portion (4.8%) of the original replays throttled to 2 Mbps in 3.6(c). For
Skype tests on Sprint in 3.6(d), the detected throttling rate is 1.5 Mbps.

Other possible explanations Variations in throttling could be due to ISPs offer-

ing different service plans and features, only some of which include throttling. When

visiting websites for several ISPs where we detected throttling, we found options

to subscribe to (more expensive) plans that did not limit video streaming (e.g., Vi-

aSat’s Platinum 100 plan), and/or features to disable throttling (e.g., AT&T’s Stream

Saver). Because our dataset does not include plan information, we cannot quantify

the impact of these factors.

3.8.3 Case studies

We now present several notable findings using our methodology on crowdsourced

Wehe data from the top four US carriers. A common case is presented in Figure 3.6(a),

depicting CDF of average throughput for original and bit-inverted YouTube replays.

The vast majority of original samples cluster around 1.5 Mbps (the detected throt-

tling rate) while the bit-inverted replays are (mostly) evenly distributed across the

throughput range.

Multiple throttling rates for the same ISP-app pair KDE analysis revealed

that Verizon has two throttling rates, one at 4 Mbps (the majority of throttled tests)

and the other at 2 Mbps. We show this using a CDF of average throughputs in
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Figure 3.6(b). We believe this is due to different plans offered by Verizon; e.g., in

Dec. 2018 their “go unlimited” plan included “DVD-Quality Streaming (480p)” while

their “beyond unlimited” plan allowed “HD-Quality Streaming (720p)” [11].

Small fraction of tests affected by throttling Our methodology identifies

throttling in Sprint, despite a small percent (4.8%) of tests being affected. To demon-

strate this visually, we plot a CDF of average throughput samples for original and

bit-inverted replays in Figure 3.6(c). There is an inflection point at 2 Mbps, the

detected throttling rate, which we also detected in lab experiments using a prepaid

SIM. We suspect the reason for such a small fraction of tests being affected is that

throttling happens on uncommon data plans, such as the prepaid one we used for lab

experiments.

Different policies for different video-streaming apps As discussed in §3.6.3,

T-Mobile implements delayed throttling based on bytes. Interestingly, we find that

not all throttled video streaming services are treated equally under this policy. We

detected 7 MB of delayed throttling for Netflix and NBC Sports, and 6 MB for Ama-

zon Prime. YouTube does not get any delayed throttling in our dataset—they are

throttled from the start.

Skype tests in Sprint We did not detect throttling of Skype video calls in our

lab experiments on a Sprint SIM; however, our methodology found evidence of Skype

video throttling from Wehe crowdsourced data. Figure 3.6(d) shows a CDF of average

throughputs for original and bit-inverted Skype video tests, with detected fixed-rate

throttling at 1.5 Mbps. When focusing on Jan., 2018 data, we find that the Jackknife

KS test used to detect differentiation has a ?-value of 8 * 10−94 with 100% accept

ratio—strong evidence of throttling.

Interestingly, Wehe tests identified such differentiation until Sep. 2018, but the

tests no longer indicated differentiation afterward. One explanation for this behavior

is that Sprint no longer throttles based on content in our Skype video tests. When
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asked (in Oct., 2018) to comment on our findings regarding Skype and other tests

indicating throttling, a press spokesperson from Sprint replied: “Sprint does not single

out Skype or any individual content provider in this way”. Our lab tests in 2019

corroborate the claim about Skype (but does not speak to the early 2018 findings);

however, our lab tests also identify that Sprint does single out content providers via

content-based throttling.

3.9 Impact on Video Streaming

While Wehe enables us to observe differentiation at scale, it does not provide

details about the video resolution for a given app (e.g., which video resolutions are

selected by a video streaming app). As described in Section 3.5, Wehe simply replays

the payloads recorded from video streaming, and does not adapt bitrates dynamically.

To address this, we need additional experiments to help us understand how streaming

apps (with adaptive bitrate) behave when being throttled.

This section describes how we conduct these additional measurements by instru-

menting video streaming apps to determine how throttling impacts the video reso-

lution selected by each player. We focus on this metric because it is the one most

often cited in ISPs’ throttling disclosures (e.g., “video streams up to 480p”), but to

date has received little attention from auditing measurements. We first describe the

data collected in Section 3.9.1. We then discuss the impact of throttling and app’s

data usage setting on streaming in Section 3.9.2. Finally, we identify root causes for

observed behavior using sequence-time diagrams in Section 3.9.3.

3.9.1 Measuring video resolution

Experiment environment We analyze Netflix, YouTube and Amazon on prepaid

plans from AT&T8, T-Mobile, Verizon, and Sprint between Jan. 14 and Jan. 25,

8The AT&T SIM had Stream Saver [8], which throttles video traffic, enabled by default.
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2019. We present the impact of throttling on video quality and throughput over each

ISP, and compare each result with tests (1) over WiFi, (2) when connected via an

encrypted VPN on the same cellular connection, and (3) when disabling any data-

saving by the apps (i.e., enabling streaming at the maximum rate according to the

app). The WiFi network is not throttled and VPN tunnels evade any content-based

throttling. In each network setting, we use each app to stream video for two minutes.9

We repeat each ISP-app experiment five times and present summary results.

Video streaming In each video streaming session, we stream the same video and

let the client app determine what video resolution to use. While the bitrate selection

code is unavailable to us, we expect that the video streaming session is influenced

by factors such as encoded bitrates, network conditions, access technology, and data

usage settings. We discuss the factors that we vary in our tests.

To vary whether a video streaming session is affected by content-based throttling,

we stream video with and without an encrypted VPN tunnel. For access technology,

we run tests over both cellular and WiFi connections. For the WiFi network, we

confirm that neither the network nor the app (the app does not attempt to save

data on WiFi) are the bottleneck. Finally, for the data usage settings, we note that

Netflix and Amazon provide an option in their app to let users control how much

data they want to use over cellular connections. Amazon has three settings: Good

(0.6GB/hour), Better (1.8GB/hour) and Best (5.8GB/hour). Netflix also provides

three settings Automatic, Save Data and Max data which allow 4 hours, 6 hours

and 20 minutes per GB. For these apps we test both their default10 and most data-

intensive settings (which we refer to as “Max data”).

9We used iPhones (6S and 8) and a Nexus 6 and obtained similar results from all three.

10“Automatic” for Netflix and “Good” data usage on Amazon.
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Video quality and throughput There are no publicly known APIs to collect

video quality information from mobile apps. Our approach is to monitor video quality

during playback using app features that print video resolution on the screen, then

use optical character recognition (OCR) to extract them for YouTube and Netflix.

Amazon does not expose video resolution information, so we obtain this data from

the HTTP GET request and the manifest file. We calculate the throughput based on

packet capture data.

3.9.2 Impact of throttling

We begin by analyzing the impact of throttling on video streaming resolution and

throughput.

Throttling decreases playback resolution Figure 3.7 shows the percentage

of time the video is streamed at each resolution. Table 3.5 shows the resolution

mapping and the total pixel count of the various resolutions that were streamed on

Amazon Prime Video, Netflix and YouTube during our video resolution experiments.

Each subfigure plots the results for a different video streaming service, and each plot

groups our results according to whether the test exposes the original packet payloads

(“exposed”) or uses a VPN to conceal them. As expected, in tests where packet

payload is exposed for Netflix and YouTube, the playback resolution is lower than

the cases where the VPN conceals the payload. This result holds even when we turn

off any data saving mechanisms (“Max data” and “VPN Max data”). The exceptions

are Amazon and Sprint on Netflix. We discuss the Amazon case below, but do not

have a root cause for Sprint/Netflix.

Cellular networks can support higher throughputs Figure 3.8 presents

the throughput observed while streaming under the default app settings for exposed

(solid) and tunneled traffic (dashed). We confirmed there was sufficient cellular band-

width (using Speedtest) of at least 20 Mbps in all tests. This shows that cellular net-
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Table 3.5. Resolution mapping used in Figure 3.7.

Labels Resolutions Total pixel count

LD

384x216 82,944
426x240 102,240
512x213 109,056
480x270 129,600
652x272 177,344

SD low
608x342 207,936
710x296 210,160
640x360 230,400

SD

640x480 307,200
768x432 331,776
720x480 345,600
854x480 409,920

HD low
960x540 518,400
1152x480 552,960
1280x533 682,240

HD 1280x720 921,600

Figure 3.7. Stacked histogram for each video streaming service, showing the per-
centage of time the video is streamed at each resolution (LD, SD, and HD are low,
standard, and high definition). The precise resolutions are in Table 3.5.

works support much higher throughput than the throttling rate (as indicated by the

larger average throughputs for VPN curves of Netflix and YouTube). The exception

is Amazon, discussed below.

Apps default to limiting their streaming rates We find that Amazon and

Netflix, by default, use a lower video resolution than the network can support, with

or without the VPN (Figure 3.7). When compared with “Max data,” nearly all of the

tests using the default data usage setting select video resolutions that were below 480p

(SD), with Netflix picking a resolution as low as 384x216 (LD) and Amazon picking

710x296 (“SD low”). These are substantially lower than the phone screen resolution

(1334x750). When we disable the default behavior and allow the apps to stream at
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(a) Amazon (b) Netflix (c) YouTube

Figure 3.8. CDF of throughput for each video streaming service (with low data
usage settings) and each carrier.

Figure 3.9. Bytes over time when streaming Netflix (red) and YouTube (blue) on
T-Mobile. Netflix experiences delayed throttling, but not YouTube.

their highest achievable rate, video streaming services are able to achieve significantly

higher resolutions—indicating that, except for Netflix on Sprint, the cellular networks

tested have sufficient bandwidth to support HD video.

Amazon over VPN connections is a special case. Unlike others, the throughput

does not increase while using a VPN because Amazon’s default data usage settings

restricts the app to only use 0.6GB per hour, or an average of 1.6 Mbps both with

and without the VPN. When we disable the default throughput limitations (not

shown) Amazon has throughputs of 2 Mbps when the packet payloads are exposed

and throughput of 4.5 Mbps over VPN. Note that the reason Amazon does not appear

to be limited by 1.5 Mbps throttling on AT&T is because AT&T throttles each TCP

connection to 1.5 Mbps individually, and Amazon uses multiple TCP connections.

In summary, throttling limits maximum video resolution, but apps’ default set-

tings and available resolutions also play a significant role.
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3.9.3 Transport-layer impact of throttling

We now investigate how throttling impacts video streaming at the transport layer.

We explore this impact in Figure 3.9 by considering the bytes transferred over time

for each video stream. Each figure is annotated with the initial transmission of a

packet (circles) as well as retransmission events (×). We collect packet captures for

this analysis from a (non-rooted) iPhone via standard developer tools for iOS [15],

and we use the definition of “TCP retransmission” in Wireshark [16].

Transparent proxies and the transport layer We observe AT&T and Verizon

implementing TCP terminating proxies in their networks with drastically different

results for the transport layer. Though separate analysis with Wehe, we identified

that AT&T uses a transparent TCP proxy to split the connection, buffer packets

from the server, and pace packets between the proxy and mobile device, at a rate

of 1.5 Mbps. This buffering and pacing of packets results in throttling that does not

incur high rates of retransmissions.

In contrast to AT&T, the retransmission rate is 23% when streaming Netflix on

Verizon, the highest among the other carriers and high by any standard.

We conducted additional experiments to investigate the root cause of this behav-

ior. Namely, we used Wehe tests in lab experiments and observed the same high

retransmission rates at the client; however, the server traces indicated little-to-no

retransmission. Thus, we believe that Verizon implements a transparent TCP proxy

like AT&T; however, unlike AT&T, Verizon’s proxy does not pace packets, instead

sending them faster than the throttling device allows (and thus leading to high packet

loss). Interestingly, there is minimal impact of the high retransmission rate on video

streaming, likely because the video streaming buffer absorbs any transient disruptions

to packet transfers.

Policies can differ between applications Figure 3.9 shows the bytes over time

when streaming a video on Netflix and YouTube over T-Mobile’s network. Note that
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when retransmission and first-arrival markers overlap, there are time gaps of 10s of

milliseconds, but not visible on a graph (which is measured in 10s of seconds). In each

cluster of points, the retransmissions occur first (and correspond to bytes sent one

RTO earlier), then as the retransmitted packets are ACKed, new first transmissions

occur 10s of milliseconds later.

We observe that T-Mobile throttles Netflix after 7 MB of data transfer (delayed

throttling), while it does not delay throttling for YouTube. While packet loss is zero

during the delayed throttling period, immediately afterward the retransmission rate is

26%, eventually reducing to 17%. By comparison, YouTube initially experiences a loss

rate of 6.8% and drops to 3% after 70 seconds. In both cases, losses waste substantial

bandwidth, but the problem is more acute for cases with delayed throttling due to

TCP sending at a high rate and adapting slowly.

3.10 Discussion

This section discusses additional considerations about our findings, their general-

ity, and future work.

Bias towards the US. Most of our data comes from the US, which necessarily

biases our findings in a way that likely undercounts differentiation outside the US.

In addition, Wehe includes tests for video and music streaming apps, as well as VoIP

and videoconference apps, that are popular in the US. However, it is likely that other

apps are more popular in other countries, and some of those apps may be throttled.

If this is the case, we would underreport the prevalence of throttling in such regions.

In the future, we will add tests for more apps that are popular in other regions.

ISPs where throttling was not detected. We gathered sufficient samples to

detect differentiation in 144 ISPs, and detected differentiation in 30 of them. This

suggests that the majority of ISPs that we studied do not deploy content-based dif-

ferentiation. Examples include major broadband providers in the US (e.g., Comcast),
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and all broadband and cellular ISPs in France. Note, however, that some ISPs may

throttle using methods other than content-based differentiation (e.g., IP address or

monthly data usage) that Wehe cannot detect. Thus, we can only say that we did not

detect content-based differentiation, but we cannot tell whether other differentiation

occurs.

Ground truth. It is difficult, and in some cases impossible, to find ground truth

for every ISP in our study. However, we did validate, via documentation on providers’

websites, that throttling policies exist for most US carriers and for several outside the

US. That said, there are many ISPs that either do not disclose this information or

make it hard to find. There is a clear need for better transparency and more uniform

ways of disclosing throttling behavior.

Future of DPI-based differentiation. We identified that the classification

rules used by ISPs for throttling rely on plaintext payload contents (e.g., SNI field in

TLS handshake). In newer protocols such as TLS 1.3 with encrypted SNI (or QUIC

with similar features), such information will no longer be in plaintext—begging the

question of how DPI devices will identify traffic for differentiation. We believe that

content-based differentiation might still exist even when using such protocols, e.g., by

correlating flow IPs with the plaintext names in DNS lookups that they correspond

to. Of course this can be addressed by technologies like DNS over HTTPS. Assuming

all content is encrypted (even DNS), we envision that classifiers will search for traffic

patterns instead of text strings. Because Wehe preserves traffic patterns, we believe

our approach will still work.

Complex relationships between content providers, ISPs, and throttling

practices. We showed that throttling practices are deployed by many ISPs,

and these practices generally worsen performance for content providers in terms of

packet loss and decreased video quality. However, we cannot identify the extent to

which content providers are (dis) satisfied with such policies. For example, content
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providers may experience reduced transit costs for throttled video when compared to

unthrottled video that uses higher resolution and more bandwidth. It is also possible

that ISPs and content providers have entered into agreements to collaboratively con-

trol traffic volumes from streaming video. In short, the relationship between content

providers, ISPs, and deployed traffic management practices may be more complicated

than publicly disclosed. Of course, understanding such relationships is outside of the

scope of this work.

3.11 Conclusion

In this work, we conducted a large-scale, one-year study of content-based traffic

differentiation policies deployed in operational networks. We developed and evaluated

a methodology that combines individually error-prone device measurements to form

high-confidence, statistically significant inferences of differentiation practices, and

identified differentiation in both cellular and WiFi networks. We found that most

throttling targets video streaming, and that there are a wide range of throttling

implementations detected in our dataset. In addition, we investigated the impact of

throttling on video streaming resolution, finding that while throttling does limit video

resolution, it is also the case that default settings in video streaming apps in some

cases are the primary reason for low resolution. We are making our code, dataset,

and summary of findings publicly available to inform stakeholders and bring empirical

data to discussions of net neutrality regulations.
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CHAPTER 4

DOMAIN NAME ENCRYPTION

4.1 Background

In this section, we provide an overview of the recent proposals that aim to improve

the security and privacy of the DNS and TLS protocols.

4.1.1 DNS over HTTPS and DNS over TLS

The DNS protocol exposes all requests and responses in plaintext, allowing a

network observer to monitor or modify a user’s network traffic, eavesdrop or tamper

with it. For instance, a man-on-the-side attacker can send forged DNS responses to

redirect a user to malicious websites, while state-level organizations can also inject

forged DNS responses to disrupt connections for censorship purposes.

As an attempt to enhance the security and privacy of the DNS protocol, two new

DNS standards, namely, DNS over HTTPS (DoH) and DNS over TLS (DoT) were

recently proposed. These technologies aim to ensure the integrity, authenticity, and

confidentiality of DNS traffic. By using DoH/DoT, all DNS queries and responses

are transmitted over TLS, ensuring their integrity against last-mile adversaries who

would otherwise be in a position to launch a man-in-the-middle (MITM) or man-

on-the-side (MOTS) attack. The main difference between the two standards is that

DoT is essentially DNS over TLS, while DoH is DNS over HTTP over TLS. This

allows DoH to combine features of HTTP and DNS. One such feature is the option

to “push” DNS data from the server to the client.
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4.1.2 SSL/TLS and ESNI

During the TLS handshake [84], the two communicating parties exchange messages

to acknowledge and verify the other side using digital certificates and agree on various

parameters that will be used to create an encrypted channel. In a client-server model,

the client trusts a digital certificate presented by the server as long as it has been

signed by a trusted certificate authority.

Ideally, private or sensitive information should be transmitted after the TLS hand-

shake has been completed. This goal can be easily achieved when a server hosts only

a single domain. However, name-based virtual hosting, which is an increasingly used

approach for enabling multiple domains to be hosted on a single server requires a

mechanism for the server to know which domain name a user intends to visit before

the TLS handshake completes. This mechanism is necessary since the server needs

to present the correct certificate to the client. The server name indication (SNI)

extension was introduced in 2003 as a solution to this problem. The SNI extension

contains a field with the domain name the client wants to visit so that the server can

then present the appropriate certificate. Since this step is conducted before the com-

pletion of the TLS handshake, the domain name specified in the SNI field is exposed

in plaintext. Consequently, all the privacy risks associated with the traditional design

of DNS also apply to the SNI extension.

The encrypted server name indication (ESNI) extension [214] has been proposed

as part of the TLS 1.3 to resolve the issue of SNI revealing the domain name visited

by a user. Clients that use ESNI encrypt the SNI field towards a given server by first

obtaining a server-specific public key through a well-known ESNI DNS record. In

September 2018, Cloudflare was among the first providers to announce support for

ESNI across its network [200].
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4.2 Related Work

The domain name system is one of the core elements of the Internet and plays

an essential role for most online services. As a result, it has been (ab)used for many

different purposes. In this section, we review prior works that investigate DNS from

security and privacy perspectives, and some recent studies that analyze the domain

name ecosystem via empirical measurements.

From a security perspective, domain names have been heavily abused for illicit

purposes. For instance, domain squatting is one of the most common abuses. It

is used to register domains that are similar to those owned by well-known Internet

companies. Domain squatting has many variations, including typo-squatting [24, 150,

231], homograph-based squatting [110, 203], homophone-based squatting [185], bit-

squatting [184], and combo-squatting [155]. Domain names registered using these

squatting techniques can then be used for phishing [192, 203] or distributing mal-

ware [28]. To cope with these unwanted domain names, DNS data has been used

intensively to create domain name reputation systems to detect abuse [34, 35, 36, 160].

Another major form of DNS abuse is DNS poisoning, in which an on-path observer

can easily observe and tamper with DNS responses to redirect users to malicious

websites or to censor unwanted content [32, 86, 100, 168, 196, 222]. The exposure

of domain names in DNS requests and TLS handshakes (due to SNI) has also been

extensively used for traffic filtering and censorship [63, 133].

As mentioned in §4.1, the traditional design of DNS exposes Internet users to

severe privacy risks. In addition to on-path observers (discussed in §4.3.2), previous

works have also studied the privacy risk associated with centralizing all domain name

resolutions to third-party recursive resolvers (e.g., 8.8.8.8, 1.1.1.1) [54, 55, 128, 154,

226, 262]. Zhao et al. [262] propose to add random noise and use private information

retrieval to improve privacy by obfuscating DNS queries. These proposals however

have turned out to be impractical and insecure under certain circumstances [54], and
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have not been adopted. Lu et al. [170] propose privacy-preserving DNS (PPDNS),

which is based on distributed hash tables and computational private information

retrieval. More recently, Hoang et al. [134] propose K -resolver as a mechanism to

distribute DoH queries among multiple recursors, thus exposing to each recursor only

a part of a user’s browsing history. Sharing similar goals with our study, Shulman et

al. [226] examined the pitfalls of DNS encryption. By analyzing the co-residence of

zone files on name servers, the authors argue that guessing visited domains by des-

tination IP address does not provide a significant advantage. Our findings, however,

show that this is only the case for a small number of domains that are co-hosted with

an adequate number of other domains.

Hounsel et al. [139] study the effect of DoH/DoT on the performance of domain

name resolution and content delivery. The study finds that the resolution time of

DoH/DoT is longer than traditional DNS resolution. Of the two new technologies,

DoT provides better page load times while DoH at best has the same page load times

as DNS. They also find that DoT and DoH perform worse than DNS in networks with

sub-optimal performance. Similarly, a recent study by Bottger et al. [44] analyzes the

DoH ecosystem and shows that they can obtain more advanced privacy features of

DoH with marginal performance degradation in terms of page load times.

There have also been studies that investigated the robustness of the DNS ecosys-

tem through various types of measurements. Ramasubramanian et al. [206] leverage

a dataset of almost 600K domains to study their trusted computing base, which is

the set of name servers on which a FQDN is hosted. The study shows that a typical

fully-qualified domain name (FQDN) depends on 46 servers on average. Dell’Amico

et al. [83] use DNS data collected through both active and passive measurements to

also investigate the ecosystem of dependencies between websites and other Internet

services. Similar to our work, Shue et al. [225] use DNS data collected by both passive

and active measurements to study web server co-location and shared DNS infrastruc-
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ture. However, their measurements were conducted from a single location, while

excluding all servers belonging to CDNs. Furthermore, the passive DNS dataset used

was collected by capturing network traffic from the authors’ institute, therefore fac-

ing all potential issues of a passive measurement discussed in §4.3.3.1. More recently,

Hoang et al. [135] revisit the results of Shue et al. [225] by conducting a large-scale

active DNS measurement study, which reveals that the Web is still centralized to a

handful of hosting providers, while IP blocklists cause less collateral damage than

previously observed regardless of a high level of website co-location.

4.3 Assessing the Privacy Benefits of Domain Name Encryp-

tion

As Internet users have become more savvy about the potential for their Internet

communication to be observed, the use of network traffic encryption technologies (e.g.,

HTTPS/TLS) is on the rise. However, even when encryption is enabled, users leak

information about the domains they visit via DNS queries and via the Server Name

Indication (SNI) extension of TLS. Two recent proposals to ameliorate this issue are

DNS over HTTPS/TLS (DoH/DoT) and Encrypted SNI (ESNI). In this paper we

aim to assess the privacy benefits of these proposals by considering the relationship

between hostnames and IP addresses, the latter of which are still exposed. We per-

form DNS queries from nine vantage points around the globe to characterize this

relationship. We quantify the privacy gain offered by ESNI for different hosting and

CDN providers using two different metrics, the k -anonymity degree due to co-hosting

and the dynamics of IP address changes. We find that 20% of the domains studied

will not gain any privacy benefit since they have a one-to-one mapping between their

hostname and IP address. On the other hand, 30% will gain a significant privacy

benefit with a k value greater than 100, since these domains are co-hosted with more

than 100 other domains. Domains whose visitors’ privacy will meaningfully improve
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are far less popular, while for popular domains the benefit is not significant. Ana-

lyzing the dynamics of IP addresses of long-lived domains, we find that only 7.7% of

them change their hosting IP addresses on a daily basis. We conclude by discussing

potential approaches for website owners and hosting/CDN providers for maximizing

the privacy benefits of ESNI.

4.3.1 Introduction

As users become more aware of the importance of protecting their online commu-

nication, the adoption of TLS is increasing [158]. It is indicative that almost 200M

fully-qualified domain names (FQDNs) support TLS [95], while Let’s Encrypt [19] has

issued a billion certificates as of February 27, 2020 [18]. Although TLS significantly

improves the confidentiality of Internet traffic, on its own it cannot fully protect user

privacy, especially when it comes to monitoring the websites a user visits.

Currently, visited domain names are exposed in both i) DNS requests, which re-

main unencrypted, and ii) the Server Name Indication (SNI) extension [141] during

the TLS handshake. As a result, on-path observers can fully monitor the domain

names visited by web users through simple eavesdropping of either DNS requests or

TLS handshake traffic. Several recent proposals aim to improve the security and pri-

vacy of these two protocols. Specifically, DNS over HTTPS (DoH) [137] and DNS over

TLS (DoT) [140] aim to preserve the integrity and confidentiality of DNS resolutions

against threats “below the recursive,” such as DNS poisoning [86], while Encrypted

Server Name Indication (ESNI) [214] aims to prevent “nosy” ISPs and other on-path

entities from observing the actual visited domain of a given TLS connection.

In this paper, we quantify the potential improvement to user privacy that a full

deployment of DoH/DoT and ESNI would achieve in practice, given that destination

IP addresses still remain visible to on-path observers. Although it is straightforward

to reveal a user’s visited site if the destination IP address hosts only that particular
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domain, when a given destination IP address serves many domains, an adversary will

have to “guess” which one is being visited.

We use two properties to quantify the potential privacy benefit of ESNI, assuming

the provider of the DoH/DoT server used is fully trusted (as it can still observe all

visited domains): the k -anonymity property and the dynamics of hosting IP addresses.

Assuming that k different websites are co-hosted on a given IP address (all using

HTTPS with ESNI supported), the privacy of a visitor to one of those sites increases

as the number of k-1 other co-hosted sites increases. In addition, the more dynamic

the hosting IP address is for a given site, the higher the privacy benefit of its visitors

is, as the mapping between domain and hosting IP address becomes less stable, and

thus less predictable.

To quantify these two properties, we conducted active DNS measurements to ob-

tain the IP addresses of an average of 7.5M FQDNs per day drawn from lists of

popular websites [26, 172] (§4.3.3). To account for sites served from content deliv-

ery networks (CDNs) which may direct users differently based on their location, we

performed name resolutions from nine locations around the world: Brazil, Germany,

India, Japan, New Zealand, Singapore, United Kingdom, United States, and South

Africa. Our measurements were conducted in two months to investigate how much a

network observer can learn about the domains visited by a user based solely on the

IP address information captured from encrypted traffic.

We find that 20% of the domains studied will not benefit at all from ESNI, due

to their stable one-to-one mappings between domain name and hosting IP address.

For the rest of the domains, only 30% will gain a significant privacy benefit with a k

value greater than 100, which means an adversary can correctly guess these domains

with a probability lower than 1%. The rest 50% of the domains can still gain some

privacy benefits, but at a lower level (i.e., 2 ≤ : ≤ 100). While sophisticated website

fingerprinting attacks based on several characteristics of network packets (e.g., timing
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and size [124, 169, 181, 190, 191, 254]) can be used to predict the visited domains,

our study aims to provide a lower bound of what an attacker can achieve.

Moreover, we observe that sites hosted by the top-ten hosting providers with

the highest privacy value (: > 500) are far less popular (§4.4.1.2). These are often

less well-known sites hosted on small hosting providers that tend to co-locate many

websites on a single IP or server. In contrast, the vast majority of more popular

sites would gain a much lower level of privacy. These sites are often hosted by major

providers, including Cloudflare (: = 16), Amazon (3 ≤ : ≤ 5), Google (: = 5),

GoDaddy (: = 4), and Akamai (: = 3).

In addition, we find that frequently changing IP addresses (at least once a day)

are limited to only 7.7% of the domains that we were able to resolve each day of

our study. As expected, dominant providers in terms of more dynamic IP addresses

include major CDN providers, such as Amazon, Akamai, and Cloudflare (§4.4.2.1).

Finally, we validate and compare our main findings by repeating part of our anal-

ysis using two different public DNS datasets (§4.4.3), and provide recommendations

for both website owners and hosting/CDN providers on how to maximize the pri-

vacy benefit offered by the combination of DoH/DoT and ESNI (§4.4.5). In particu-

lar, website owners may want to seek hosting services from—the unfortunately quite

few—providers that maximize the ratio between co-hosted domains per IP address,

and minimize the duration of domain-to-IP mappings. Hosting providers, on the other

hand, can hopefully aid in maximizing the privacy benefits of ESNI by increasing the

unpredictability of domain-to-IP mappings.

4.3.2 Threat Model

We assume an idealistic future scenario in which both DoH/DoT and ESNI are

fully deployed on the Internet. Under this assumption, an on-path observer will only

be able to rely on the remaining visible information, i.e., destination IP addresses,
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to infer the sites being visited by the monitored users. The extent to which this

inference can be easily made depends on i) whether other domains are hosted on the

same IP address, and ii) the stability of the mapping between a given domain and its

IP address(es).

The probability with which an adversary can successfully infer the visited domain

can be modeled using the k -anonymity property, with k corresponding to the number

of domains co-hosted on the same IP address. The probability of a successful guess

is inversely proportional to the value of k, i.e., the larger the k, the more difficult it

is for the adversary to make a correct guess, thus providing increased user privacy.

The above threat model is oblivious to distinguishable characteristics among a

group of co-hosted websites, such as popularity ranking, site sensitivity, and network

traffic patterns. We should thus stress that the situation in practice will be much

more favorable for the adversary. Even for a server with a high k, it is likely that

not all k sites will be equally popular or sensitive. Although the popularity and

sensitivity can vary from site to site, depending on who, when, and from where is

visiting the site [130], an adversary can still consider the popularity and sensitivity

of the particular k sites hosted on a given IP address to make a more educated guess

about the actual visited site.

Utilizing the ranking information of all domains studied, we model such an adver-

sarial scenario in §4.4.2 and show that our threat model based on k -anonymity is still

valid. In addition, page-specific properties such as the number of connections towards

different third-party servers and the number of transferred bytes per connection can

be used to derive robust web page fingerprints [51, 52, 73, 91, 127, 166, 194, 245],

which can improve the accuracy of attribution even further. Although identifying

a visited website among all possible websites on the Internet by relying solely on

fingerprinting is quite challenging, applying the same fingerprinting approach for at-
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tributing a given connection (and subsequent associated connections) to one among

a set of k well-known websites is a vastly easier problem.

Consequently, an on-path observer could improve the probability of correctly in-

ferring the actual visited website by considering the popularity and sensitivity of the

co-hosted domains on the visited IP address, perhaps combined with a form of traffic

fingerprinting. Although such a more powerful attack is outside the scope of this

work, as we show in the rest of the paper, our results already provide a worrisome

insight on how effective an even much less sophisticated attribution strategy would

be, given the current state of domain co-hosting.

4.3.3 Methodology

In this section we review existing DNS measurement techniques and highlight the

data collection goals of our study. We then describe how we select domains and

vantage points to achieve these goals.

4.3.3.1 Existing DNS Measurements

Previous studies use passive measurement to observe DNS traffic on their net-

works [83, 225, 249]. However, passive data collection can suffer from bias depending

on the time, location, and demographics of users within the observed network. Pas-

sive data collection can also raise ethical concerns, as data collected over a long period

of time can gradually reveal online habits of monitored users.

There are also prior works (by both academia and industry) that conducted large-

scale active DNS measurements for several purposes and made their datasets available

to the community [159, 208]. However, these datasets have two common issues that

make them unsuitable to be used directly in our study. First, all DNS queries are

resolved from a single location (country), while we aim to observe localized IPs de-

livered by CDNs to users in different regions. Second, although these datasets have

been used in many other studies, none of the prior measurements are designed to
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filter out poisoned DNS responses (e.g., as a result of censorship leakage), which can

significantly affect the accuracy of the results and negatively impact data analysis if

not excluded. We discuss steps taken to sanitize these datasets in §4.4.

4.4 Poisoned Response Sanitization

While processing public DNS datasets from other sources (to which we compare

our findings in §4.4.3), we surprisingly discovered thousands of low-ranked or obscure

domains seemingly being co-hosted on the same IP addresses that also host very

popular websites, such as Facebook and Twitter—which of course was not actually

the case. As part of our investigation, we observed that the authoritative servers

of most of these domains were located in China (using the MaxMind dataset [174]).

We then queried the same domains from outside China using their authoritative

servers, and indeed received responses pointing to IP addresses that belong to either

Facebook or Twitter. By inspecting network traffic captures taken during these name

resolutions, we observed that the initial response containing the wrong (falsified) IP

address was followed by another DNS response with the same valid DNS query ID

that contained a different (correct) IP address.

We attribute the above observed behavior to DNS-based censorship by the “Great

Firewall” (GFW) of China [31, 69, 168, 255, 258, 266], which has also been observed

and analyzed by previous studies [32, 100]. Censorship leakage happens due to the

GFW’s filtering design, which inspects and censors both egress and ingress network

traffic. While some censors (e.g., Pakistan, Syria, Iran) forge DNS responses with

NXDOMAIN [43, 61, 65, 180] or private addresses [37], making them easier to distin-

guish, China poisons DNS responses with routable public IP addresses belonging to

other non-Chinese organizations [100, 133, 258]. In contrast to the findings of previous

works, however, in this case the real hosting IP addresses of the censored domains

are located within China, while previous works mostly focus on investigating the
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Table 4.1. Most frequently abused subnets in poisoned DNS responses from China.

AS32934 AS13414 AS36351
Facebook Twitter SoftLayer

31.13.72.0 199.59.148.0 74.86.12.0
31.13.69.0 199.59.149.0 67.228.235.0
31.13.73.0 199.16.156.0 74.86.151.0
31.13.66.0 199.59.150.0 75.126.124.0
69.171.245.0 199.16.158.0 67.228.74.0

blockage of websites that are hosted outside China (e.g., google.com, facebook.com,

blogger.com).

To validate our findings, we cross-checked the IP addresses from second (real)

DNS responses with the ones obtained by resolving the same domains from locations

in China. As the authoritative servers of these domains are also in China, our queries

did not cross the GFW, which mostly filters traffic at border ASes [32, 72, 257], and

thus were not poisoned.

We follow this verification technique, where we issue additional queries to resolve

domains whose authoritative name server is located in China and then detect injected

DNS packets to exclude poisoned responses from analyses. In total, we detected more

than 21K domains based in China with poisoned responses. Table 4.1 shows the top

/24 IP subnets belonging to Facebook, Twitter, and SoftLayer, which are the most

frequently observed in poisoned responses. Our observation aligns with recent findings

of other censorship measurement studies [133, 182].

4.4.0.1 Our Measurement Goals

Ideally, we would like to derive the mapping between all live domain names and

their IP addresses. Unfortunately, this is extremely challenging to achieve in practice

because there are more than 351.8 million second-level domain names registered across

all top-level domains (TLDs) at the time we compose this paper [241], making it

unrealistic to actively resolve all of them with adequate frequency. Furthermore, not
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all domains host web content, while many of them correspond to spam, phishing [192,

203], malware command and control [28], or parking pages registered during the

domain dropcatching process [161], which most users do not normally visit.

As we aim to study the privacy benefits of ESNI, we thus choose to focus on

active sites that are legitimately visited by the majority of web users. To derive

such a manageable subset of sites, we relied on lists of website rankings, but did

not consider only the most popular ones, as this would bias our results. Instead, we

expanded our selection to include as many sites as possible, so that we can keep our

measurements manageable, but at the same time observe a representative subset of

legitimately visited domains on the Internet.

4.4.0.2 Domains Tested

There are four top lists that are widely used by the research community: Alexa [26],

Majestic [172], Umbrella [237], and Quantcast [202]. However, it is challenging to de-

termine which top list should be chosen, as recent works have shown that each top

list has its own issues that may significantly affect analysis results if used without

some careful considerations [162, 219, 221]. For instance, Alexa is highly fluctuating,

with more than 50% of domain names in the list changing every day, while Majestic is

more stable but cannot quickly capture sites that suddenly become popular for only

a short period of time. Pochat et al. [162] suggest that researchers should combine

these four lists to generate a reliable ranking.

For this study, we generated our own list by aggregating domains ranked by Alexa

and Majestic from the most recent 30 days for several reasons. First, these two lists

use ranking techniques that are more difficult and costly to manipulate [162]. Second,

they have the highest number of domains in common among the four. We exclude

domains from Quantcast because it would make our observations biased towards

popular sites only in the US [162]. Lastly, we do not use domains from Umbrella
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Table 4.2. Breakdown of the five largest TLDs studied.

Daily Total

TLDs 1,031 1,125
FQDNs 7,556,066 13,597,409
.com 3,835,080 7,026,005
.org 347,993 584,924
.de 264,057 501,597
.net 263,262 442,729
.ru 210,701 346,194

because the list is vulnerable to DNS-based manipulation and also contains many

domains that do not host web content [162, 219]. To this end, we studied a total of

13.6M domains. As shown in Table 4.2, our derived list comprises an average of 7.5M

popular fully qualified domain names (FQDNs) collected on a daily basis, covering

1,031 TLDs. For the whole experiment duration, we studied a total of 13.6M domains

and 1,125 TLDs. Table 4.2 also shows the top five largest TLDs in our dataset, with

.com being the most dominant, comprising more than 50% of the domains observed.

Data scope. Although this subset of domains corresponds to about 4% of all

domains in the TLD zone files, we argue that it is still adequate for the goal of

our study, i.e., determining whether the current state of website co-location will allow

ESNI to provide a meaningful privacy benefit. Considering only this subset of domains

may lead to an under-approximation of the actual k -anonymity offered by a given IP

or set of IPs, as some co-hosted domains may not be considered. This means that

our results can be viewed as a lower bound of the actual k -anonymity degree for a

given visited IP address, which is still a desirable outcome.

As discussed in §4.3.2, the popularity of a website, along with other qualitative

characteristics, can be used by an adversary to improve attribution. Indeed, given

that the long tail of domains that are left out from our dataset mostly correspond to

vastly less popular and even unwanted or dormant domains [231], any increase in k

they may contribute would in practice be rather insignificant, as (from an attribution
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perspective) it is unlikely they will be the ones that most web users would actually

visit.

4.4.0.3 Measurement Location and Duration

Due to load balancing and content delivery networks, deriving all possible IP ad-

dresses for a given popular domain is very challenging. To approximate this domain-

to-IP mapping, we performed our own active DNS measurements from several van-

tage points acquired from providers of Virtual Private Servers (VPS). When choosing

measurement locations, we tried to distribute our vantage points so that their geo-

graphical distances are maximized from each other. This design decision allows us

to capture as many localized IP addresses of CDN-hosted sites as possible. To that

end, we run our measurements from nine countries, including Brazil, Germany, India,

Japan, New Zealand, Singapore, United Kingdom, United States, and South Africa.

Our vantage points span the six most populous continents. From all measurement

locations mentioned above, we send DNS queries for approximately 7.5M domains on

a daily basis. When issuing DNS queries, we enabled the iterative flag in the queries,

bypassing local recursive resolvers to make sure that DNS responses are returned by

actual authoritative name servers. The results presented in this work are based on

data collected for a period of two months, from February 24th to April 25th, 2019.

4.4.1 Data Analysis

In this section we use two metrics, k -anonymity and the dynamics of hosting

IP addresses, to quantify the privacy benefits offered by different hosting and CDN

providers. To verify the validity of our k -anonymity model, we also apply Zipf’s

law on the popularity ranking of domains to account for a more realistic (i.e., more

powerful) adversary.
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Figure 4.1. Cumulative distribution function (CDF) of the number of domains
hosted per IP address, as a percentage of all observed IP addresses. About 70% of
all observed IPv4 addresses host only a single domain.

4.4.1.1 Single-hosted vs. Multi-hosted Domains

Over a period of two months, from February 24th to April 25th, 2019, we observed

an average of 2.2M and 500K unique IPv4 and IPv6 addresses, respectively, from our

daily measurements. Of these IP addresses, 70% of IPv4 and 79% of IPv6 addresses

host only a single domain, as shown in Figure 4.1. This means that visitors of the

websites hosted on those addresses will not gain any meaningful privacy benefit with

ESNI, due to the one-to-one mapping between the domain name and the IP address

on which it is hosted. About 95% of both IPv4 and IPv6 addresses host less than 15

domains.

When calculating the percentage of IPv6-supported sites, we find that less than

15% support IPv6. Regardless of the increasing trend [74], the future adoption of IPv6

is still unclear [70]. Since the majority of web traffic is still being carried through

IPv4, in the rest of the paper we focus only on IPv4 addresses.

Based on our measurements, we identify three main ways in which a domain may

be hosted, in terms of the IP addresses used and the potential privacy benefit due

to ESNI, as illustrated in Figure 4.2. In the simplest case, a single-hosted domain
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Figure 4.2. Different types of domain hosting according to whether they can benefit
from ESNI. Single-hosted domains are exclusively hosted on one or more IP addresses,
and thus cannot benefit from ESNI. In contrast, multi-hosted domains are always co-
hosted with more domains on a given IP address, and thus can benefit by ESNI.

may be exclusively hosted on one or more IP addresses that do not serve any other

domain, to which we refer as privacy-detrimental IP addresses (Figure 4.2, left).

As there is no sharing of the IP address(es) with other domains, an adversary can

trivially learn which site is visited based solely on the destination IP address. On the

other hand, a multi-hosted domain (Figure 4.2, right) may be co-hosted on one or

more IP addresses that always serve at least one or more other domains, to which we

refer as privacy-beneficial IP addresses. Since the destination IP address always hosts

multiple domains, an adversary can only make a (possibly educated) guess about the

actual domain a given user visits, and thus multi-hosted domains always benefit to

some extent from ESNI—the more co-hosted domains on a given IP address, the

higher the privacy gain offered by ESNI.

Finally, there is a chance that a domain is hosted on a mix of privacy-detrimental

and privacy-beneficial IP addresses, which we call partially multi-hosted domains

(Figure 4.2, middle). In that case, only visitors to the subset of IP addresses that

co-host other domains will benefit from ESNI. Based on our measurements, partially

multi-hosted domains correspond to only a 0.3% fraction (20K) of all domains (daily

average). Single-hosted domains comprise 18.7% (1.4M) and multi-hosted domains

comprise 81% (6M) of all domains.
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The privacy degree of a partially multi-hosted domain depends on the probability

that a visitor gets routed to a privacy-beneficial IP of that domain. In other words,

a partially multi-hosted domain will mostly behave as a multi-hosted domain if the

majority of its IP addresses are privacy-beneficial. In fact, we find that this is the

case for more than 92.5% of the partially multi-hosted domains studied. Based on

this fact, and given its extremely small number compared to the other two types,

in the rest of our paper we merge partially multi-hosted domains with the actual

multi-hosted domains, to simplify the presentation of our results.

Going back to Figure 4.1, based on the above breakdown, we observe that 70%

of all IP addresses that host a single domain correspond to 18.7% of all domains,

i.e., the single-hosted ones. On the other hand, the 81% of multi-hosted domains are

co-hosted on just 30% of the IP addresses observed.

Next, we analyze the popularity distribution of single-hosted and multi-hosted

domains to identify any difference in the user population of these two types of do-

mains. Note that we only base our analysis on the ranking information provided by

the top lists to comparatively estimate the scale of the user base, and not for abso-

lute ranking purposes. More specifically, we only use the top 100K domains for the

analysis in Figure 4.3, since rankings lower than 100K are not statistically significant,

as confirmed by both top list providers and recent studies [27, 219]. Figure 4.3 shows

that single-hosted and multi-hosted domains exhibit a nearly identical distribution of

popularity rankings.

4.4.1.2 Estimating the Privacy Benefit of Multi-hosted Domains

In this section, we focus on the 81% of multi-hosted domains that can benefit from

ESNI, and attempt to assess their actual privacy gain. Recall that a website can gain

some privacy benefit only if it is co-hosted with other websites, in which case an

on-path adversary will not know which among all co-hosted websites is actually being
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Figure 4.3. CDF of the popularity ranking for single-hosted and multi-hosted do-
mains.

visited. We use k -anonymity to model and quantify the privacy gain of multi-hosted

domains.

Going back to Figure 4.2, we can apply this definition in two ways, depending on

whether we focus on IP addresses or domains. For a given IP address, its k -anonymity

value (“k” for brevity) corresponds to the number of co-hosted domains. For a given

multi-hosted domain, its k may be different across the individual IP addresses on

which it is hosted, as the number of co-hosted domains on each of those addresses

may be different. Consequently, the k value of a multi-hosted domain is calculated as

the median k of all its IP addresses.1 In both cases, the privacy gain increases linearly

with k. Based on these definitions, we now explore the privacy gain of domains hosted

on different hosting and CDN providers.

Table 4.3 shows the top-ten hosting providers offering the highest median k -

anonymity per IP address (i.e., greater than 500). As shown in the third column,

the average number of unique IP addresses observed daily for each provider is very

low, with half of them hosting all domains under a single IP address. Using the Hurri-

1Since most domains have similar k values across their hosting IP addresses, both mean and
median can be used in this case.
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Table 4.3. Top hosting providers offering the highest median k -anonymity per IP
address.

Median Organization Unique Highest

k IPs Rank

3,311 AS19574 Corporation Service 2 1,471
2,740 AS15095 Dealer Dot Com 1 80,965
2,690 AS40443 CDK Global 1 68,310
1,338 AS32491 Tucows.com 1 22,931
1,284 AS16844 Entrata 1 96,564

946 AS39570 Loopia AB 6 19,238
824 AS54635 Hillenbrand 1 117,251
705 AS53831 Squarespace 23 386
520 AS12008 NeuStar 2 464
516 AS10668 Lee Enterprises 4 3,211

cane Electric BGP Toolkit, we confirmed that these providers are indeed small, with

many of them managing less than 10K IP addresses allocated by regional Internet

registries. When looking into the popularity of the websites hosted by these providers,

as shown in the last column, the highest ranked website is only at the 386th position,

hosted on Squarespace, while more than half of these providers host websites that are

well below the top 10K.

Next, we investigate the k -anonymity offered by major providers that dominate

the unique IP addresses observed. Table 4.4 lists the top-20 major hosting and CDN

providers with more than 5K unique IP addresses observed. Unlike small hosting

providers, these major providers are home to more popular sites. Indeed, the most

popular sites hosted by these providers are all within the top 10K. In contrast to

small providers, however, the median k -anonymity per IP address offered by these

providers is quite low, meaning that sites hosted on them will gain a much lower level

of privacy. Except from Cloudflare, which has the highest k of 16, all other providers

have a single-digit k.

Tables 4.3 and 4.4 represent two ends of the privacy spectrum for multi-hosted

domains. On one end, numerous but less popular domains are hosted on providers
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Table 4.4. Top hosting providers with highest number of observed IP addresses.

Median Organization Unique Highest

k IPs Rank

16 AS13335 Cloudflare, Inc. 64,285 112
5 AS16509 Amazon.com, Inc. 47,786 37
5 AS46606 Unified Layer 27,524 1,265
3 AS16276 OVH SAS 22,598 621
3 AS24940 Hetzner Online GmbH 21,361 61
4 AS26496 GoDaddy.com, LLC 16,415 90
2 AS14061 DigitalOcean, LLC 11,701 685
3 AS14618 Amazon.com, Inc. 11,008 11
6 AS32475 SingleHop LLC 10,771 174
2 AS26347 New Dream Network 10,657 1,419
7 AS15169 Google LLC 9,048 1
3 AS63949 Linode, LLC 8,062 2,175
4 AS8560 1&1 Internet SE 6,898 2,580
3 AS32244 Liquid Web, L.L.C 6,412 1,681
3 AS19551 Incapsula Inc 6,338 1,072
4 AS36351 SoftLayer Technologies 6,005 483
3 AS16625 Akamai Technologies 5,862 13
4 AS34788 Neue Medien Muennich 5,679 7,526
6 AS9371 SAKURA Internet Inc. 5,647 1,550
3 AS8075 Microsoft Corporation 5,360 20

managing a handful of IP addresses, benefiting from high k -anonymity; on the other

end, fewer but more popular websites are hosted on providers managing a much larger

pool of millions of IP addresses, suffering from low k -anonymity.

To provide an overall view of the whole privacy spectrum, Figure 4.4 shows CDFs

of k of all studied domains across nine different regions. As illustrated, k values are

almost identical across the nine regions from which we conducted our measurements.

While our DNS data shows that there are 471K (CDN-supported) domains served

from different IP addresses depending on the resolution location, the k values of

these domains remain similar regardless of the DNS resolution origin.

As discussed in §4.3.2, a low (e.g., single-digit) k cannot allow ESNI to offer mean-

ingful privacy, given that i) not all k sites will be equally popular, and ii) website
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Figure 4.4. CDF of the k -anonymity for all studied domains across nine measure-
ment locations (k=1 corresponds to the 18.7% of single-hosted domains).
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Figure 4.5. Top providers that host most domains.

fingerprinting can be used to improve attribution accuracy even further [51, 166,

191, 194, 245]. Assuming that k needs to be greater than 100 to provide meaning-

ful privacy, since an adversary would correctly guess a domain being visited with a

probability less than 1%, then according to Figure 4.4, only about 30% of the sites

will benefit from domain name encryption. We conduct a more in-depth analysis of

the probability with which an adversary would correctly guess domains being visited

based on Zipf’s law in §4.4.2.
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Finally, we examine the top-10 providers that host the largest number of domains

among the ones studied. Although these mostly include some of the providers listed

in Table 4.4, two of them are not included on that table, and one (Squarespace)

is actually included in Table 4.3. The violin plot of Figure 4.5 depicts the top-ten

providers that host most domains. The area of each violin is proportional to the

number of domains hosted by that provider, while the shape of each violin illustrates

the popularity ranking distribution of hosted websites. The median k of each provider

is denoted by the red dot. Google and Cloudflare are the top hosting providers, with

more than 500K domains each. Other providers host different numbers of domains,

ranging from 315K to 123K.2 Although hosting fewer domains, both Automattic and

Squarespace provide significantly higher privacy with a k of 110 and 705, respectively.

4.4.2 Weighting the Privacy Benefit Based on Domain Popularity

In §4.4.1.2, we used the k -anonymity model to quantify the privacy benefit pro-

vided by multi-hosted domains. However, one might consider that the model does not

accurately capture a real-world adversary, as not all co-hosted domains are equally

popular. Adversaries could base their guess on the probability that a domain is

more (or less) likely to be visited, according to the visit frequency of that domain

compared to other co-hosted domains. However, it is infeasible for us to obtain the

data of domain visit frequencies, since this is only known by the respective hosting

providers.

Fortunately, prior studies have shown that the relative visit frequency of domains

follows Zipf’s law [46, 265]. More specifically, Zipf’s law states that the relative

probability of a domain (3) being visited is inversely proportional to its popularity

2Note that a website may be hosted on more than one provider [135]. In that case, we count the
site separately for each hosting provider.
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Figure 4.6. CDF of the probability of correctly guessing a visited domain based
on the k -anonymity value and popularity ranking information, as percentage of all
tested domains.

ranking (%3 ∝ 1/(A0=:3)U). We thus apply Zipf’s law3 on the popularity ranking of

domains to compute the probability with which an adversary can correctly guess that

a given domain is being visited.

From a privacy-detrimental IP address, it is straightforward for the adversary to

learn the domain being visited as the IP address solely hosts that single domain.

However, given a privacy-beneficial IP address that hosts multiple domains, a more

realistic adversary would make his guess based on the probability that a domain is

more likely to be visited compared to other co-hosted domains. In order to compute

this probability, we first obtain the domains 31, . . . , 3= that are hosted on a single

�% 9 and compute their %3 values according to Zipf’s law. We define %38 9 =
%38∑=

:=1 %3:

as the probability that domain 38 was visited when �% 9 was observed.

For domains that are hosted on multiple IP addresses, the probability is esti-

mated by taking the median of all probabilities that the domain is visited from all

IP addresses hosting it. We therefore compute the probability that an adversary can

3For simplicity, we present results with U = 1, following the strict Zipf’s law. However, adjusting
the value of U to match previous observations [46] also gave similar results.
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correctly guess domain 38 that is hosted on �%1, . . . , �%< as follows:

%8 = <4380=(%381 , . . . , %38<) (4.1)

As shown in Figure 4.6, our k -anonymity model is a close lower bound to the

case where the adversary considers the popularity rankings. The figure shows two

CDFs of the probability that the adversary can guess which domain is being visited.

The continuous (blue) line is computed based on the k -anonymity value of co-hosted

domains. Each domain has an equal probability of 1/: to be visited. The dashed (red)

line is computed by applying the Zipf’s law on the domain popularity. We can see

that even if adversaries rely on domain popularity rankings to improve the accuracy

of their prediction, the highest probability that this guess is correct is similar to the

probability estimated by the k -anonymity value.

4.4.2.1 Domain-to-IP Mapping Stability

Besides the degree of co-hosting, the stability of a website’s IP address(es) also

plays an important role in whether ESNI will provide meaningful privacy benefits. If

the IP address of a website changes quite frequently, this will have a positive impact on

the privacy offered due to ESNI. Unless adversaries have enough resources to acquire

all domain-to-IP mappings of interest at almost real-time, they will no longer be

able to use the destination IP address as an accurate predictor of the visited website,

because a previously known domain-to-IP mapping may not be valid anymore. On the

other hand, mappings that remain stable over the time make it easier for adversaries

to monitor the visited websites.

In this section, we examine the stability of domain-to-IP mappings, and how it

affects privacy. We are particularly interested in finding how often domain-to-IP

mappings change. As discussed in §4.3.3, all top lists of popular sites have their own

churn (i.e., new sites appear and old sites disappear from the lists on a daily basis).
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Figure 4.7. Longevity distribution of domain-to-IP mappings as percentage of num-
ber of mappings.

To prevent this churn from affecting our analysis, we consider only the subset of

domains that were present daily on both top lists (§4.4.0.1) during the whole period

of 61 days of our study. This set of domains comprises 2.6M domains, from which we

observed a total of 22.7M unique domain-to-IP mappings because a domain may be

hosted on hundreds of IP addresses.

Figure 4.7 shows the distribution of the longevity of these mappings in days. More

than 80% of the mappings last less than four consecutive days (short-term mappings),

corresponding to 202K (7.7%) domains served from 400K unique IP addresses. On

the other hand, 13% of the mappings remain unchanged for the whole study period

(long-term mappings), corresponding to 2.4M domains served from 1.1M unique IP

addresses. As also shown in Figure 4.7, there are two dominant clusters of domains

that either change their hosting IP addresses frequently or do not change at all.

This is a favorable result for adversaries, as it implies that they do not have to keep

resolving a large number of domains, since most domain-to-IP mappings remain quite

stable over a long period.

The popularity distribution of the domains that correspond to these two short-

term and long-term mappings is shown in Figure 4.8. While domains with short-term

mappings are evenly distributed across the popularity spectrum, domains with long-
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Figure 4.8. CDF of domain popularity for short-term and long-term domain-to-IP
mappings.

term mappings slightly lean towards lower popularity rankings. This result can be

attributed to the fact that more popular websites are more likely to rotate their IP

addresses for load-balancing reasons, while less popular sites are more likely to be

served from static IP addresses.

An increased churn of IP addresses also helps ESNI provide better privacy. We

thus investigated which providers exhibit the highest churn rate by grouping the

IP addresses of short-term mappings according to their ASN. Figure 4.9 shows the

top-ten providers with the highest number of IP addresses in short-term mappings

(bars). The dots indicate the number of domains hosted on those IP addresses.

Although Amazon and Akamai do not top the list of providers that host most domains

(Figure 4.5), along with Cloudflare they occupy the top five positions of the providers

with the highest number of dynamic IPs. Google uses a relatively small pool of around

5.3K IP addresses, to host more domains (41K) than the other providers.
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4.4.3 Comparison with Other Datasets

In this section, we analyze existing public DNS datasets to examine the impact

of i) larger datasets (in terms of number of domains), and ii) more localized vantage

points, on the estimation of per-domain k -anonymity.

The Active DNS Project [159] is currently collecting A records of about 300M

domains derived from 1.3K zone files on a daily basis. In addition to this effort,

Rapid7 [208] also conducts active DNS measurements at a large scale and offers

researchers access to its data. Unlike the Active DNS Project, Rapid7 resolves a

much larger number of domains (1.8B), but with a lower frequency (domains are

resolved only once a week). The dataset includes not only second-level domains from

several TLD zone files, but also lower-level domains obtained through web crawling

and targeted scanning with Zmap [89].

Different from these datasets, as discussed in §4.4.0.1, our domain name dataset is

curated from the global lists of Alexa and Majestic. We also perform measurements

from vantage points around the world to observe localized DNS responses from CDNs.

In contrast, the above datasets are collected from local vantage points, as their goal

is to maximize the number of observed domains, and not to exhaustively resolve all
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Figure 4.10. CDF of the k -anonymity value per domain as a percentage of all
domains observed from the Active DNS Project, Rapid7, and our datasets.

potential IP addresses of a domain. In particular, the Active DNS Project is run from

Georgia Tech, while Rapid7’s data is collected using AWS EC2 nodes in the US. To

that end, we used two datasets from the Active DNS Project and Rapid7 collected

on March 29th, 2019 for our comparison. We sanitized poisoned records from these

datasets, as described in §4.4, before analyzing them.

Figure 4.10 shows the CDF of the k -anonymity value per domain for all the

domains in the Active DNS, Rapid7, and our datasets, while Figure 4.11 shows the

CDF of the k -anonymity value per domain for only common domains among the three

datasets.

In Figure 4.10, when k = 1, there is some difference in the percentage of single-

hosted domains between the Active DNS Project (5.3%), Rapid7 (54.3%), and our

observation (18.7%). As expected, the percentage of single-hosted domains for Rapid7

is the highest because this dataset is the largest (1.8B FQDNs), and includes lower-

level FQDNs that may host other services (e.g., email, DNS, SSH) instead of web

content. On the other hand, only 5.3% of the domains in the Active DNS dataset are

single-hosted, since the dataset contains mostly A records of domains extracted from

TLD zone files, instead of many lower-level FQDNs.
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Figure 4.11. CDF of the k -anonymity value per domain as a percentage of common
domains observed from the Active DNS Project, Rapid7, and our datasets.

When all domains are considered, our observation of single-hosted domains is in

between the two (18.7%) because (as mentioned in §4.4.0.1) we derive our domain

name dataset from the two global top websites lists (Alexa and Majestic), and include

not only second-level domains but also lower-level FQDNs, as long as they are included

in the lists and serve web content. This aligns well with the results of Rapid7 and

Active DNS, given the inherent over-approximation of the Rapid7 dataset (due to non-

web services and highly unpopular or even single-use domains) and the inherent under-

approximation of the Active DNS Project dataset (due to only domains extracted from

TLD zone files).

When considering only common domains, the percentages of single-hosted do-

mains are 4.1%, 11.7%, and 20.4% for the Rapid7, Active DNS, and our dataset,

respectively. In other words, some domains classified as single-hosted in our dataset

are actually multi-hosted when considering the larger datasets. This result confirms

our hypothesis discussed in §4.4.0.1 that by only considering the two sets of popular

websites, we would have missed those less popular, random, or even dormant domains

in the long tail. Thus, the result provided by our dataset can be considered as a lower

bound value of the actual k -anonymity, since any increase in k provided by less well-
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known, random, or even dormant domains is less meaningful from the perspective of

adversaries whose goal is to reveal a visited website by incorporating the popularity

ranking information in their “guess.”

At the right end of the CDFs in both Figures 4.10 and 4.11, the two larger datasets

exhibit k -anonymity values higher than ours. The primary reason for this is that

these datasets include not only second-level domains, but also third-level and longer

FQDNs. The higher k values also comprise the long-tail of domains that are not

included in our dataset, including less popular domains, random or single-use FQDNs

used for tracking, and malicious domains [231].

4.4.4 Reverse DNS Lookups

The Internet Engineering Task Force (IETF) recommends that it should be possi-

ble to conduct a reverse DNS lookup for every given domain [93]. In a forward DNS

lookup, a domain name is resolved to an A (IPv4) record, while a reverse DNS lookup

sends out an IP address to ask for its associated FQDN. The DNS record storing this

information is called a PTR (pointer) record. Unless configured to point to a FQDN

by its owner, it is not compulsory to configure PTR records for every IP address.

Although performing reverse DNS lookups seems to be a straightforward way of

mapping a given IP address back to its associated FQDN, this can potentially uncover

only single-hosted domains. More importantly, not all reverse DNS queries return a

(meaningful4) domain name because the IETF’s recommendation is only optional,

and thus not adopted universally.

We analyzed Rapid7’s reverse DNS dataset, which contains PTR records for the

whole public IPv4 space, to see how many IP addresses could be used to reveal the

visited destinations under the assumed global ESNI deployment, by just performing

4Many PTR records are formatted with dash-separated IP segments. For example, the
Amazon EC2 IP address 54.69.253.182 has a PTR record to ec2-54-69-253-182.us-west-
2.compute.amazonaws.com, which may not actually correspond to a user-facing web service.
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a reverse DNS lookup. We find that there are 1.27B unique IP addresses having

PTR records. Of these, at least 172M (14%) of them point to a meaningful FQDN

(i.e., not in the form of dash-separated IP segments). Within this set of domains, we

could find 136K single-hosted domains observed by our dataset. This means about

10% of single-hosted domains have PTR records configured. Under a global ESNI

deployment, IP addresses of these domains would be detrimental to the privacy of

users who connect to them.

As expected, we also observed more than 3M PTR records in which domain names

explicitly indicate through the prefix “mail” that they correspond to email servers.

These email servers support PTR record because many providers will not accept

messages from other mail servers that do not support reverse lookups [167].

4.4.5 Discussion

4.4.5.1 Recommendations

While the security benefits of DoH/DoT against on-path adversaries are clear

(e.g., prevention of MiTM or MoTS DNS poisoning attacks), our findings show that

Encrypted SNI alone cannot fully address the privacy concerns it aims to tackle. More

effort and collaboration from all involved parties (i.e., operators of DNS authoritative

name servers, website owners, and hosting and CDN providers) are needed. In this

section we provide some suggestions for maximizing the privacy benefits of ESNI.

Full Domain Name Confidentiality. In the current designs, plaintext domain

names are exposed through two channels: the SNI extension in TLS, and traditional

DNS name resolutions—the deployment of DoH/DoT is thus a prerequisite for ESNI.

Equivalently, the use of DoH/DoT will not provide any meaningful privacy if domain

names are still exposed through the (unencrypted) SNI extension in TLS handshake

traffic.
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Recently, there is a push for the deployment of DoH/DoT, with major organiza-

tions already supporting it (e.g., Google, Cloudflare, Firefox), though this has not

been followed by an equivalent effort for the deployment of ESNI. An even more

complicated method of securing DNS traffic is DNS-over-HTTPS-over-Tor, which

has been already implemented and supported by Cloudflare [220]. Unless the confi-

dentiality of domain names is preserved on both channels (TLS and DNS), neither

technology can provide any actual privacy benefit if deployed individually.

Domain Owners. Website owners who want to provide increased privacy to their

users can seek hosting providers or CDNs that offer an increased ratio of co-hosted

domains per IP address and/or highly dynamic domain-to-IP mappings. In practice,

however, this may be challenging. Our results show that unfortunately only a few

providers offer a high domain-to-IP ratio, while other more pressing factors (e.g.,

site popularity) may tilt the decision towards other more important factors, such as

latency, bandwidth, or points of presence.

While pointer (PTR) records are often not configured, from a privacy perspective,

their operation conflicts with DoH/DoT and ESNI as further discussed in §4.4.4.

Consequently, website operators should not configure PTR records unless absolutely

necessary (e.g., for email servers). In addition, providers with a higher rotation of IP

addresses are more preferable, as this also helps in improving privacy.

Hosting Providers. Hosting and CDN providers are in a more privileged position

to achieve meaningful impact in helping improve the potential privacy benefits of

ESNI, as they can control the number of co-hosted domains per IP address, and the

frequency of IP addresses rotation. Unless website owners prefer otherwise, providers

could group more websites under the same IP address (which, understandably, may

not be desirable for some websites).

To improve k -anonymity even more meaningfully, providers should cluster web-

sites according to similarities in terms of traffic patterns and popularity ranking,
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to hinder website fingerprinting attempts. As discussed in §4.4.2.1, more dynamic

hosting IP addresses can also help improve visitors’ privacy. Currently, the num-

ber of websites benefiting from more short-lived domain-to-IP mappings is relatively

small. While more frequent IP address changes may complicate operational issues and

are certainly more challenging to deploy from a technical perspective (especially for

smaller providers), existing load balancing schemes already provide such a capability,

which could be tuned to also maximize privacy. In the future, it may be worthwhile

to explore more sophisticated schemes that actively attempt to maximize privacy

by increasing the “shuffling” rate of co-hosted domains per IP address, to hinder

attribution even further, especially when considering more determined adversaries.

4.4.5.2 Impact

The deployment of domain encryption has various advantages and disadvantages

from the two—rather conflicting—perspectives of Internet censorship and network

visibility.

The existing plaintext exposure of domain names on the wire, as part of DNS

requests and TLS handshakes, has enabled the wide use of network traffic filtering

and censorship based on domain names [32, 86, 100, 133, 196, 222]. In a future with

all domain name information being encrypted, DNS and SNI traffic will no longer be

an effective vector to conduct censorship. It is likely that censors will shift to use

IP-based blocking, which can be very effective if hosting IP addresses of censored

websites are stable and host only a handful of sites or services [88, 131]. However,

if providers start adapting according to the above mentioned recommendations, the

cost of conducting IP-based blocking will increase, since a censor will have to keep

track of which IP address belong to which websites.

More importantly, the collateral damage caused by this type of blocking will also

increase dramatically if censored websites are co-hosted with multiple other innocu-
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ous websites [135]. Although some previous actions from the side of providers (e.g.,

hindering domain fronting [102]) have shown that privacy is often given a secondary

priority [209], as the collateral damage caused to censors may also impact signifi-

cantly the providers, the renewed recent focus on privacy as a potential competitive

advantage by some providers may encourage the deployment of hosting schemes that

will improve the privacy benefits of ESNI.

On the other hand, while providing many security and privacy benefits, domain

name encryption can be a “double-edged sword” for network administrators who want

to have full visibility and control over domain resolutions in the networks under their

responsibility. Until now, the operation of firewalls, intrusion detection systems, and

anti-spam or anti-phishing filters has benefited immensely from the domain name

information extracted from network traffic, as is evident by the series of works men-

tioned in §4.2 that employ DNS data to detect domain name abuses and malicious

online activities.

Under a full DoH/DoT and ESNI deployment, this visibility will be lost, and

systems based on domain reputation [34] and similar technologies will be severely

impacted. While many malicious domains often hide themselves by sharing hosting

addresses with other innocuous and unpopular websites [231], it will be challenging to

detect and block them. A possible solution would be to rely solely on TLS proxying

using custom provisioned certificates, in order to gain back the visibility lost by ESNI

and DoH/DoT, which is already a common practice used by transparent SSL/TLS

proxies. Although this will defeat any privacy benefits of these technologies, this may

be an acceptable trade off for corporate networks and other similar environments.

4.4.6 Conclusion

The deployment of encrypted SNI in TLS, combined with DNS over HTTPS/TLS,

will definitely provide many security benefits to Internet users. However, as we have
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shown in this work, a significant effort is still needed in order for these same tech-

nologies to provide meaningful privacy benefits. More specifically, while domain name

information is encrypted, the IP address information is still visible to any on-path

observers and can be used to infer the websites being visited.

Using DNS data collected through active DNS measurements, we studied the

degree of co-hosting of the current web, and its implications in relation to ESNI’s

privacy benefits. Quantifying these benefits for co-hosted websites using k -anonymity,

we observed that the majority of popular websites (about half of all domains studied)

will gain only a small privacy benefit (k<16). Such a small degree of co-hosting is not

enough to withstand determined adversaries that may attempt to perform attribution

by considering the popularity or even the traffic patterns of the co-hosted websites

on an observed destination IP address. Domains that will obtain a more meaningful

privacy benefit (k>500) include only vastly less popular websites mostly hosted by

smaller providers, while 20% of the websites, will not gain any benefit at all due to

their one-to-one mapping between domain name and hosting IP address.

We hope that our findings will raise awareness about the remaining effort that

must be undertaken to ensure a meaningful privacy benefit from the deployment of

ESNI. In the meantime, privacy-conscious website owners may seek hosting services

offered by providers that exhibit a high ratio of co-hosted domains per IP address,

and highly dynamic domain-to-IP mappings.
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CHAPTER 5

CONCLUSION

5.1 Summary

In this dissertation, I focused on developing measurement techniques and plat-

forms that study network interference globally. Through different measurement stud-

ies on network interference, I shed light on new findings of how network interference

happens across the globe longitudinally. In the second part of this thesis, I study

how DNS encryption technologies affect users’ privacy over the Internet and impact

network interference.

In our global Internet censorship study (ICLab), I leveraged commercial VPN

vantage points that provide us flexibility and control over measurements, while re-

ducing risks in measuring Internet censorship at a global scale. Collecting data from

all levels of the network stack allows us to analyze different types of censorship while

minimizing false positives and manual validation.

Our studies on the Great Firewall of China revealed a previously unknown DNS

poisoning behavior of the GFW, where I identified three distinct DNS packet injectors.

Further, by testing 534M domains over a nine-month period, I find that the GFW’s

DNS censorship has a widespread negative impact on the global Internet, including

poisoned resource records in many popular public DNS resolvers. I also identify

different groups of domain names that receive a set of fixed forged IP addresses or

CNAME records. Using the insights gained from the data collected by our platform,

I propose strategies to detect poisoned responses and evade GFW’s DNS censorship

effectively.
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Our study of traffic differentiation demonstrated that most throttling targets video

streaming, and there are a wide range of throttling implementations detected in our

dataset. Finally, I find that while throttling does limit video resolution, the default

settings in video streaming apps, in some cases, are the primary reason for low reso-

lution.

Our study of the privacy benefits of DNS encryption technologies showed that

while the deployment of ESNI and DNS encryption technologies will provide many

security benefits to Internet users, a significant effort is needed for these technologies

to provide meaningful privacy benefits. This is because the IP address information

is still visible to any on-path observers and can be used to infer the websites being

visited. Analyzing the co-hosting degree of websites, I observed that the majority of

popular websites would gain a small privacy benefit. In contrast, the less popular

websites that are primarily hosted by smaller providers obtain a more meaningful

privacy benefit.

5.2 Future Work

The research presented in this thesis can be extended in different directions. With

respect to Internet censorship measurement, given various active global censorship

measurement platforms, one research direction is to study the difference in the list

of censorship domains and events that each platform reports. Since each platform

leverages different types of vantage points (i.e., volunteers, VPNs, and remote mea-

surements), complimenting these platforms would be beneficial to the community.

I leveraged crowd-sourced data using mobile phone measurements to study content-

based traffic differentiation policies deployed in operational networks in the traffic

differentiation paper. A future extension of this work would be to study traffic differ-

entiation with the intention of slowing down users’ connections. Previous work [264]

has reported widespread and persistent slowdowns across more than 400 nodes in
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China. Therefore, both commercial and user-based VPN vantage points can be lever-

aged to measure traffic differentiation globally and longitudinally.

Regarding our work on studying the DNS poisoning behavior of the GFW, it is

important to note that network interference can also happen at other layers of the

network stack. More specifically, blocking can happen at the application layer (e.g.,

SNI-based blocking [62], keyword-based filtering [207]) or even at the IP layer [129,

132], regardless of potential collateral damage [135]. A future research direction is to

study how the adoption of DNS encryption technologies such as ESNI that encrypts

the SNI field would impact the network interference of the GFW.
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